Abstract

Reynolds based thermo-elasto-hydrodynamic (TEHD) simulations of tilting pad journal bearings (TPJBs) generally provide accurate results; however, the uncertainty of the pad’s leading edge thermal boundary conditions causes uncertainty of the results. The highly complex thermal-flow mixing action between pads (BPs) results from the oil supply nozzle jets and geometric features. The conventional Reynolds approach employs mixing coefficients (MCs), estimated from experience, to approximate a uniform inlet temperature for each pad. Part I utilized complex computational fluid dynamics (CFD) flow modeling to illustrate that temperature distributions at the pad inlets may deviate strongly from being uniform. The present work retains the uniform MC model but obtains the MC from detailed three-dimensional CFD modeling and machine learning, which could be extended to the radially and axially varying MC case. The steps for implementing an artificial neural network (ANN) approach for MC regression are provided as follows: (1) utilize a design of experiment step for obtaining an adaptable training set, (2) conduct CFD simulations on the BP to obtain the outputs of the training set, (3) apply an ANN learning process by Levenverg–Mardquart backpropagation with the Bayesian regularization, and (4) couple the ANN MC results with conventional TEHD Reynolds models. An approximate log fitting method provides a simplified approach for MC regression. The effectiveness of the Reynolds TEHD TPJB model with ANN regression-based MC distributions is confirmed by comparison with CFD based TEHD TPJB model results. The method obtains an accuracy nearly the same as the complete CFD model, but with the computational economy of a Reynolds approach.

References

1.
Abdollahi
,
B.
, and
San Andrés
,
L.
,
2018
, “
Improved Estimation of Bearing Pads’ Inlet Temperature: A Model for Lubricant Mixing at Oil Feed Ports and Validation Against Test Data
,”
ASME J. Tribol.
,
141
(
3
), p.
031703
. 10.1115/1.4041720
2.
Hagemann
,
T.
, and
Schwarze
,
H.
,
2018
, “
A Model for Oil Flow and Fluid Temperature Inlet Mixing in Hydrodynamic Journal Bearings
,”
ASME J. Tribol.
,
141
(
2
), p.
021701
. 10.1115/1.4041211
3.
Hagemann
,
T.
, and
Schwarze
,
H.
,
2019
, “
Theoretical and Experimental Analyses of Directly Lubricated Tilting-Pad Journal Bearings With Leading Edge Groove
,”
ASME J. Eng. Gas Turbines Power
,
141
(
5
), p.
051010
. 10.1115/1.4041026
4.
Yang
,
J.
, and
Palazzolo
,
A.
,
2019
, “
3D Thermo-Elasto-Hydrodynamic CFD Model of a Tilting Pad Journal Bearing—Part I: Static Response
,”
ASME J. Tribol.
,
141
(
6
), p.
061702
. 10.1115/1.4043349
5.
Yang
,
J.
, and
Palazzolo
,
A.
,
2019
, “
3D Thermo-Elasto-Hydrodynamic CFD Model of a Tilting Pad Journal Bearing—Part II: Dynamic Response
,”
ASME J. Tribol.
,
141
(
6
), p.
061703
. 10.1115/1.4043350
6.
Ettles
,
C.
,
1969
, “
Hot Oil Carry-Over in Thrust Bearings
,”
Proc. Inst. Mech. Eng., Conf. Proc.
,
184
(
12
), pp.
75
81
. 10.1243/pime_conf_1969_184_373_02
7.
Ettles
,
C. M. M.
,
1980
, “
The Analysis and Performance of Pivoted Pad Journal Bearings Considering Thermal and Elastic Effects
,”
ASME J. Lubr. Tech.
,
102
(
2
), pp.
182
191
. 10.1115/1.3251465
8.
Mitsui
,
J.
,
Hori
,
H.
, and
Tanaka
,
M.
,
1983
, “
Thermohydrodynamic Analysis of Cooling Effect of Supply Oil in Circular Journal Bearing
,”
ASME J. Lubr. Tech.
,
105
(
3
), pp.
414
420
. 10.1115/1.3254629
9.
Knight
,
J. D.
, and
Barrett
,
L. E.
,
1988
, “
Analysis of Tilting-Pad Journal Bearing With Heat Transfer Effects
,”
ASME J. Tribol.
,
110
(
1
), pp.
128
133
. 10.1115/1.3261550
10.
Brugier
,
D.
, and
Pascal
,
M. T.
,
1989
, “
Influence of Elastic Deformations of Turbo-Generator Tilting Pad Bearings on the Static Behavior and on the Dynamic Coefficients in Different Designs
,”
ASME J. Tribol.
,
111
(
2
), pp.
364
371
. 10.1115/1.3261925
11.
Taniguchi
,
S.
,
Makino
,
T.
,
Takeshita
,
K.
, and
Ichimura
,
T.
,
1990
, “
A Thermohydrodynamic Analysis of Large Tilting-Pad Journal Bearing in Laminar and Turbulent Flow Regimes With Mixing
,”
ASME J. Tribol.
,
112
(
3
), pp.
542
550
. 10.1115/1.2920291
12.
Kim
,
J.
,
Palazzolo
,
A. B.
, and
Gadangi
,
R. K.
,
1994
, “
TEHD Analysis for Tilting-Pad Journal Bearings Using Upwind Finite Element Method
,”
Tribo. Trans.
,
37
(
4
), pp.
771
783
. 10.1080/10402009408983359
13.
Kim
,
J.
,
Palazzolo
,
A.
, and
Gadangi
,
R.
,
1995
, “
Dynamic Characteristics of TEHD Tilt Pad Journal Bearing Simulation Including Multiple Mode Pad Flexibility Model
,”
ASME J. Vib. Acoust.
,
117
(
1
), pp.
123
135
. 10.1115/1.2873856
14.
Lee
,
D.
,
Sun
,
K.
,
Kim
,
B.
, and
Kang
,
D.
,
2017
, “
Thermal Behavior of a Worn Tilting Pad Journal Bearing: Thermohydrodynamic Analysis and Pad Temperature Measurement
,”
Tribo. Trans.
,
61
(
6
), pp.
1074
1083
. 10.1080/10402004.2018.1469805
15.
San Andrés
,
L.
, and
Li
,
Y.
,
2015
, “
Effect of Pad Flexibility on the Performance of Tilting Pad Journal Bearings—Benchmarking a Predictive Model
,”
ASME J. Eng. Gas Turbines Power
,
137
(
12
), p.
122503
. 10.1115/1.4031344
16.
San Andrés
,
L.
,
Tao
,
Y.
, and
Li
,
Y.
,
2014
, “
Tilting Pad Journal Bearings: On Bridging the Hot Gap Between Experimental Results and Model Predictions
,”
ASME J. Eng. Gas Turbines Power
,
137
(
2
), p.
022505
. 10.1115/1.4028386
17.
Mehdi
,
S. M.
,
Jang
,
K.
, and
Kim
,
T.
,
2018
, “
Effects of Pivot Design on Performance of Tilting Pad Journal Bearings
,”
Tribol. Int.
,
119
, pp.
175
189
. 10.1016/j.triboint.2017.08.025
18.
da Silva
,
H. A. P.
, and
Nicoletti
,
R.
,
2019
, “
Design of Tilting-Pad Journal Bearings Considering Bearing Clearance Uncertainty and Reliability Analysis
,”
ASME J. Tribol.
,
141
(
1
), p.
011703
. 10.1115/1.4041021
19.
Suh
,
J.
, and
Palazzolo
,
A.
,
2015
, “
Three-Dimensional Dynamic Model of TEHD Tilting-Pad Journal Bearing—Part I: Theoretical Modeling
,”
ASME J. Tribol.
,
137
(
4
), p.
041704
. 10.1115/1.4030021
20.
Tong
,
X.
, and
Palazzolo
,
A.
,
2018
, “
Tilting Pad Gas Bearing Induced Thermal Bow-Rotor Instability
,”
Tribol. Int.
,
121
, pp.
269
279
. 10.1016/j.triboint.2018.01.066
21.
Tong
,
X.
, and
Palazzolo
,
A.
,
2017
, “
Measurement and Prediction of the Journal Circumferential Temperature Distribution for the Rotordynamic Morton Effect
,”
ASME J. Tribol.
,
140
(
3
), p.
031702
. 10.1115/1.4038104
22.
Arihara
,
H.
,
Kameyama
,
Y.
,
Baba
,
Y.
, and
San Andés
,
L.
,
2018
, “
A Thermoelastohydrodynamic Analysis for the Static Performance of High-Speed—Heavy Load Tilting-Pad Journal Bearing Operating in the Turbulent Flow Regime and Comparisons to Test Data
,”
ASME J. Eng. Gas Turbines Power
,
141
(
2
), p.
021023
. 10.1115/1.4041130
23.
Pinkus
,
O.
,
1990
,
Thermal Aspects of Fluid Film Tribology
,
ASME Press
,
New York
,
187
197
.
24.
Hagan
,
M. T.
,
Demith
,
H. T.
,
Beale
,
M. H.
, and
Jesus
,
O. D.
,
2014
,
Neural Network Design
,
PWS Publishing Co.
,
Boston, MA
.
25.
Kaya
,
M.
, and
Hajimirza
,
S.
,
2018
, “
Surrogate Based Modeling and Optimization of Plasmonic Thin Film Organic Solar Cells
,”
Int. J. Heat Mass Transfer
,
118
, pp.
1128
1142
. 10.1016/j.ijheatmasstransfer.2017.11.044
26.
Chopra
,
S.
,
Yadav
,
D.
, and
Chopra
,
A. N.
,
2019
, “
Artificial Neural Networks Based Indian Stock Market Price Prediction: Before and After Demonetization
,”
J. Swarm Intel. Evol. Comput.
,
8
(
1
), p.
1000174
.
27.
Pijanowski
,
B. C.
,
Tayyebi
,
A.
,
Doucette
,
J.
,
Pekin
,
B. K.
,
Braun
,
D.
, and
Plourde
,
J.
,
2014
, “
A Big Data Urban Growth Simulation at a National Scale: Configuring the GIS and Neural Network Based Land Transformation Model to Run in a High Performance Computing (HPC) Environment
,”
Environ. Model. Softw.
,
51
, pp.
250
268
. 10.1016/j.envsoft.2013.09.015
28.
Ramirez
,
C. A. P.
,
Sanchez
,
J. P. A.
,
Rodriguez
,
M. V.
,
Adeli
,
H.
,
Gonzalez
,
A. D.
, and
Troncoso
,
R. J. R.
,
2019
, “
Recurrent Neural Network Model With Bayesian Training and Mutual Information for Response Prediction of Large Buildings
,”
Eng. Struct.
,
178
, pp.
603
615
. 10.1016/j.engstruct.2018.10.065
29.
Fakhri
,
M.
, and
Dezfoulian
,
R. S.
,
2019
, “
Pavement Structural Evaluation Based on Roughness and Surface Distress Survey Using Neural Network Model
,”
Constr. Build. Mater.
,
204
, pp.
768
780
. 10.1016/j.conbuildmat.2019.01.142
30.
Hasan
,
S.
,
2019
, “
Prediction of Breast Cancer Type Based on Artificial Intelligence Technique
,”
Int. J. Adv. Sci. Res. Eng.
,
5
(
1
), pp.
43
50
. 10.31695/IJASRE.2019.33048
31.
García-Alba
,
J.
,
Bárcena
,
J. F.
,
Ugarteburu
,
C.
, and
García
,
A.
,
2019
, “
Artificial Neural Network as Emulators of Process-Based Models to Analyze Bathing Water Quality in Estuaries
,”
Water Res.
,
150
, pp.
283
295
. 10.1016/j.watres.2018.11.063
32.
Levenberg
,
K.
,
1944
, “
A Method for the Solution of Certain Non-Linear Problems in Least Squares
,”
Quart. Appl. Math.
,
2
(
2
), pp.
164
168
. 10.1090/qam/10666
33.
Marquardt
,
D. W.
,
1963
, “
An Algorithm for Least Squares Estimation of Nonlinear Parameters
,”
SIAM J. Appl. Math.
,
11
(
2
), pp.
431
441
. 10.1137/0111030
34.
Hagan
,
M. T.
, and
Menhaj
,
M. B.
,
1994
, “
Training Feedforward Networks With the Marquardt Algorithm
,”
IEEE Trans. Neural Netw.
,
5
(
6
), pp.
989
993
. 10.1109/72.329697
35.
Foresee
,
F. D.
, and
Hagan
,
M. T.
,
1997
, “
Gauss-Newton Approximation to Bayesian Learning
,”
Proceedings of International Joint Conference on Neural Networks
,
Houston, TX
,
June 12
, pp.
1930
1935
.
36.
McKay
,
M. D.
,
Beckman
,
R. J.
, and
Conover
,
W. J.
,
1979
, “
A Comparison of Three Methods for Selecting Values of Input Variables in the Analysis of Output From a Computer Code
,”
Technometrics
,
42
(
1
), pp.
55
61
. 10.1080/00401706.2000.10485979
37.
Queipo
,
N. V.
,
Haftka
,
R. T.
,
Shyy
,
W.
,
Goel
,
T.
,
Vaidayanathan
,
R.
, and
Tucker
,
K.
,
2005
, “
Surrogate-Based Analysis and Optimization
,”
Prog. Aerospace Sci.
,
41
(
1
), pp.
1
28
. 10.1016/j.paerosci.2005.02.001
38.
Nguyen
,
D.
, and
Widrow
,
B.
,
1990
, “
Improving the Learning Speed of 2-Layer Neural Networks by Choosing Initial Value of the Adaptive Weights
,”
Int. Joint Conf. Neural Netw.
,
3
, pp.
21
26
. 10.1109/ijcnn.1990.137819
You do not currently have access to this content.