Abstract

The continuous emergency braking performance of copper-based brake pads alloyed with different Ni contents were tested. The results showed that the copper-based brake pad with high Ni content exhibits improved stability of friction coefficient during the whole emergency braking process, which indicates that Ni helps to reduce the sensitivity of the brake pad to the change of braking conditions. Moreover, the fade phenomenon of friction coefficient is obviously alleviated as the increase in Ni content under high-pressure and high-speed braking conditions. The introduction of Ni enhances the plastic deformation resistance of friction surface and promotes the formation of high-strength mechanical mixed layer and thick tribo-oxide film. This stable tribo-film remained on the contact interface is responsible for the steady mean friction coefficient under different braking conditions. Excessive addition of Ni reduces the plasticity of the friction surface, leading to the change of the main wear mechanism from adhesive wear to delamination

References

1.
Zhang
,
P.
,
Zhang
,
L.
,
Fu
,
K. X.
,
Cao
,
J. W.
,
Shijia
,
C. R.
, and
Qu
,
X. H.
,
2018
, “
Effects of Different Forms of Fe Powder Additives on the Simulated Braking Performance of Cu-Based Friction Materials for High-Speed Railway Trains
,”
Wear
,
414–415
, pp.
317
326
. 10.1016/j.wear.2018.09. 006
2.
Xiao
,
Y.
,
Zhang
,
Z.
,
Yao
,
P.
,
Fan
,
K.
,
Zhou
,
H.
,
Gong
,
T.
,
Zhao
,
L.
, and
Deng
,
M.
,
2018
, “
Mechanical and Tribological Behaviors of Copper Metal Matrix Composites for Brake Pads Used in High-Speed Trains
,”
Tribol. Int.
,
119
, pp.
585
592
. 10.1016/j.triboint.2017.11.038
3.
Peng
,
T.
,
Yan
,
Q.
,
Li
,
G.
,
Zhang
,
X.
,
Wen
,
Z.
, and
Jin
,
X.
,
2017
, “
The Braking Behaviors of Cu-Based Metallic Brake Pad for High-Speed Train Under Different Initial Braking Speed
,”
Tribol. Lett.
,
65
(
135
), pp.
1
13
. 10.1007/s11249-017-0914-9
4.
Fouvry
,
S.
,
Liskiewicz
,
T.
,
Kapsa
,
P.
,
Hannel
,
S.
, and
Sauger
,
E.
,
2003
, “
An Energy Description of Wear Mechanisms and Its Applications to Oscillating Sliding Contacts
,”
Wear
,
255
(
1–6
), pp.
287
298
. 10.1016/s0043-1648(03)00117-0
5.
Zhang
,
P.
,
Zhang
,
L.
,
Fu
,
K. X.
,
Cao
,
J. W.
,
Shijia
,
C. R.
, and
Qu
,
X. H.
,
2019
, “
Fade Behaviour of Copper-Based Brake Pad During Cyclic Emergency Braking at High Speed and Overload Condition
,”
Wear
,
428–429
, pp.
10
23
. 10.1016/j.wear.2019.01.126
6.
Huang
,
B. Y.
, and
Qiu
,
G. Z.
,
2005
, “Nonferrous Metal Materials Engineering (Part I),”
China Materials Engineering Canon
.
Y. X.
Lu
, ed.,
Chemical Industry Publishing House
,
Beijing, China
, pp.
225
226
.
7.
Österle
,
W.
,
Prietzel
,
C.
,
Kloß
,
H.
, and
Dmitriev
,
A. I.
,
2010
, “
On the Role of Copper in Brake Friction Materials
,”
Tribol. Int.
,
43
(
12
), pp.
2317
2326
. 10.1016/j.triboint.2010.08.005
8.
Österle
,
W.
,
Dmitriev
,
A. I.
, and
Kloß
,
H.
,
2012
, “
Possible Impacts of Third Body Nanostructure on Friction Performance During Dry Sliding Determined by Computer Simulation Based on the Method of Movable Cellular Automata
,”
Tribol. Int.
,
48
, pp.
128
136
. 10.1016/j.triboint.2011.11.018
9.
Zehetbauer
,
M. J.
,
Stüwe
,
H. P.
,
Vorhauer
,
A.
,
Schafler
,
E.
, and
Kohout
,
J.
,
2003
, “
The Role of Hydrostatic Pressure in Severe Plastic Deformation
,”
Adv. Eng. Mater.
,
5
(
5
), pp.
330
337
. 10.1002/adem.200310090
10.
Lu
,
L.
,
Sui
,
M. L.
, and
Lu
,
K.
,
2001
, “
Superplasticity Extensibility and Deformation Mechanism of a Nanocrystalline Copper Sample
,”
Adv. Eng. Mater.
,
3
(
9
), pp.
663
667
. 10.1002/1527-2648(200109)3:9<663::aid-adem663>3.0.co;2-c
11.
Rodriguesa
,
A. C. P.
,
Österle
,
W.
,
Gradt
,
T.
, and
Azevedo
,
C. R. F.
,
2017
, “
Impact of Copper Nanoparticles on Tribofilm Formation Determined by Pin-on-Disc Tests With Powder Supply: Addition of Artificial Third Body Consisting of Fe3O4, Cu and Graphite
,”
Tribol. Int.
,
110
, pp.
103
112
. 10.1016/j.triboint.2017.02.014
12.
Li
,
C.
,
Feng
,
X. M.
,
Shen
,
Y. F.
, and
Chen
,
W. H.
,
2016
, “
Preparation of Al2O3/TiO2 Particle-Reinforced Copper Through Plasma Spraying and Friction Stir Processing
,”
Mater. Des.
,
90
, pp.
922
930
. 10.1016/j.matdes.2015.11.047
13.
Bagheri
,
G. A.
,
2016
, “
The Effect of Reinforcement Percentages on Properties of Copper Matrix Composites Reinforced With TiC Particles
,”
J. Alloy. Compd.
,
676
, pp.
120
126
. 10.1016/j.jallcom.2016.03.085
14.
Zhao
,
X.
,
Guo
,
L. C.
,
Zhang
,
L.
,
Jia
,
T. T.
,
Chen
,
C. G.
,
Hao
,
J. J.
,
Shao
,
H.-P.
,
Guo
,
Z.-M.
,
Luo
,
J.
, and
Sun
J.-B.
,
2016
, “
Influence of Nano-Al2O3-Reinforced Oxide-Dispersion-Strengthened Cu on the Mechanical and Tribological Properties of Cu-Based Composites
,”
Int. J. Min. Met. Mater.
,
23
(
12
), p.
1444
. 10.1007/s12613-016-1368-z
15.
Wang
,
Y.
,
Zhang
,
L.
,
Xiao
,
J. K.
,
Chen
,
W.
,
Feng
,
C. F.
,
Gan
,
X. P.
, and
Zhou
,
K.
,
2016
, “
The Tribo-Corrosion Behavior of Cu-9 wt% Ni-6 wt% Sn Alloy
,”
Tribol. Int.
,
94
, pp.
260
268
. 10.1016/j.triboint.2015.06.031
16.
Jin
,
K. J.
,
Qiao
,
Z. H.
,
Zhu
,
S. Y.
,
Cheng
,
J.
,
Yin
,
B.
, and
Yang
,
J.
,
2016
, “
Friction and Wear Properties and Mechanism of Bronze–Cr–Ag Composites Under dry-Sliding Conditions
,”
Tribol. Int.
,
96
, pp.
132
140
. 10.1016/j.triboint.2015.12.031
17.
Jin
,
K. J.
,
Qiao
,
Z. H.
,
Zhu
,
S. Y.
,
Cheng
,
J.
,
Yin
,
B.
, and
Yang
,
J.
,
2016
, “
Synthesis Effects of Cr and Ag on the Tribological Properties of Cu–9Al–5Ni–4Fe–Mn Bronze Under Seawater Condition
,”
Tribol. Int.
,
101
, pp.
69
80
. 10.1016/j.triboint.2016.04.012
18.
Li
,
J. W.
,
Wongsa-Ngam
,
J.
,
Xu
,
J.
,
Shan
,
D. B.
,
Guo
,
B.
, and
Langdon
,
T. G.
,
2015
, “
Wear Resistance of an Ultrafine-Grained Cu-Zr Alloy Processed by Equal-Channel Angular Pressing
,”
Wear
,
326–327
, pp.
10
19
. 10.1016/j.wear.2014.12.022
19.
Uyyuru
,
R. K.
,
Surappa
,
M. K.
, and
Brusethaug
,
S.
,
2007
, “
Tribological Behavior of Al–Si–SiCp Composites/Automobile Brake pad System Under Dry Sliding Conditions
,”
Tribol. Int.
,
40
, pp.
365
373
. 10.1016/j.triboint.2005.10.012
20.
Peng
,
T.
,
Yan
,
Q. Z.
, and
Zhang
,
X. L.
,
2018
, “
Stability of Metal Matrix Composite Pads During High-Speed Braking
,”
Tribol. Lett.
,
66
(
63
), pp.
1
13
. 10.1007/s11249-018-1014-1
21.
Gultekin
,
D.
,
Uysal
,
M.
,
Aslan
,
S.
,
Alaf
,
M.
,
Guler
,
M. O.
, and
Akbulut
,
H.
,
2010
, “
The Effects of Applied Load on the Coefficient of Friction in Cu-MMC Brake Pad/Al-SiCp MMC Brake Disc System
,”
Wear
,
270
(
1–2
), pp.
73
82
. 10.1016/j.wear.2010.09.001
22.
Zhang
,
P.
,
Zhang
,
L.
,
Wei
,
D. B.
,
Wu
,
P. F.
,
Cao
,
J. W.
,
Shijia
,
C. R.
, and
Qu
,
X. H.
,
2020
, “
Adjusting Function of MoS2 on the High-Speed Emergency Braking Properties of Copper-Based Brake Pad and the Analysis of Relevant Tribo-Film of Eddy Structure
,”
Composites, Part B
,
185
, p.
107779
. 10.1016/j.compositesb.2020.107779
23.
Godet
,
M.
,
1984
, “
The Third-Body Approach: A Mechanical View of Wear
,”
Wear
,
100
(
1–3
), pp.
437
452
. 10.1016/0043-1648(84)90025-5
24.
Bhattacharya
,
S.
,
Dinda
,
G. P.
,
Dasgupta
,
A. K.
,
Natu
,
H.
,
Dutta
,
B.
, and
Mazumder
,
J.
,
2011
, “
Microstructural Evolution and Mechanical, and Corrosion Property Evaluation of Cu–30Ni Alloy Formed by Direct Metal Deposition Process
,”
J. Alloy. Compd.
,
509
(
22
), pp.
6364
6373
. 10.1016/j.jallcom.2011.03.091
You do not currently have access to this content.