Abstract

A finite groove approach (FGA), based on the finite element method (FEM), is used for analyzing the static and dynamic behavior of spiral-grooved aerodynamic journal bearings at different eccentricities, number of grooves, and compressibility numbers. The results of the FGA are compared with the narrow-groove theory (NGT) solutions. For the rotating-groove case, a novel time-periodic solution method is presented for computing the quasi-steady-state and dynamic pressure profiles. The new method offers the advantage of avoiding time-consuming transient integration, while resolving a finite number of grooves. The static and dynamic solutions of the NGT and FGA approach are compared, and they show good agreement, even at large eccentricities (ε=0.8) and high compressibility numbers (Λ = 40). Stability maps at different eccentricities are presented. At certain operation points, a stability decrease toward larger eccentricities is observed. The largest stability deviations of the NGT from the FGA solutions occur at large groove angle, low number of grooves, and large compressibility numbers.

References

1.
Schiffmann
,
J.
,
2015
, “
Integrated Design and Multi-Objective Optimization of a Single Stage Heat-Pump Turbocompressor
,”
ASME J. Turbomach.
,
137
(
7
), p.
071002
. 10.1115/1.4029123
2.
Rosset
,
K.
,
Mounier
,
V.
,
Guenat
,
E.
, and
Schiffmann
,
J.
,
2018
, “
Multi-Objective Optimization of Turbo-ORC Systems for Waste Heat Recovery on Passenger Car Engines
,”
Energy
,
159
, pp.
751
765
. 10.1016/j.energy.2018.06.193
3.
Zhao
,
D.
,
Blunier
,
B.
,
Gao
,
F.
,
Dou
,
M.
, and
Miraoui
,
A.
,
2014
, “
Control of An Ultrahigh-Speed Centrifugal Compressor for the Air Management of Fuel Cell Systems
,”
IEEE Trans. Ind. Appl.
,
50
(
13
), pp.
2225
2234
. 10.1109/TIA.2013.2282838
4.
Whipple
,
R.
,
1958
,
The inclined groove bearing
.
Technical Report
.
United Kingdom Atomic Energy Authority. Research Group. Atomic Energy Research Establishment
.
Harwell, Berks, England
.
5.
Hirs
,
G. G.
,
1965
, “
The Load Capacity and Stability Characteristics of Hydrodynamic Grooved Journal Bearings
,”
ASLE Trans.
,
8
(
3
), pp.
296
305
. 10.1080/05698196508972102
6.
Malanoski
,
S. B.
, and
Pan
,
C. H. T.
,
1965
, “
The Static and Dynamic Characteristics of the Spiral-Grooved Thrust Bearing
,”
ASME J. Basic Eng.
,
87
(
3
), pp.
547
555
. 10.1115/1.3650603
7.
Vohr
,
J.
, and
Pan
,
C.
,
1964
,
On the Spiral Grooved, Self-Acting, Gas Bearing
,
Mechanical Technology Inc
,
Latham, NY
,
No. 63TR52
.
8.
Vohr
,
J. H.
, and
Chow
,
C. Y.
,
1965
, “
Characteristics of Herringbone-Grooved, Gas-Lubricated Journal Bearings
,”
ASME J. Basic Eng.
,
87
(
3
), pp.
568
576
. 10.1115/1.3650607
9.
Fleming
,
D. P.
, and
Hamrock
,
B. J.
,
1974
, “
Optimization of Self-Acting Herringbone Journal Bearing for Maximum Stability
.”
NASA Technical Memorandum
.
10.
Hamrock
,
B.
, and
Fleming
,
D.
,
1971
, “
Optimization of Self-Acting Herringbone Journal Bearings for Maximum Radial Load Capacity
.”
NASA Technical Note
.
11.
Castelli
,
V.
, and
Vohr
,
J.
,
1967
,
Performance Characteristics of Herringbone-Grooved Journal Bearings Operating At High Eccentricity Ratios and With Misalignment
,
Mechanical Technology Inc
,
Latham, NY
.
12.
Malanoski
,
S. B.
,
1965
, “
Experiments on An Ultra-Stable Gas Journal Bearing
,”
Tribology
,
1
(
1
), p.
62
. http://dx.doi.org/10.1016/s0041-2678(68)80736-5
13.
Muijderman
,
E. A.
,
1965
, “
Spiral Groove Bearings
,”
Ind. Lubr. Tribol.
,
17
(
1
), pp.
12
17
. 10.1108/eb052769
14.
Bonneau
,
D.
,
Huitric
,
J.
, and
Tournerie
,
B.
,
1993
, “
Finite Element Analysis of Grooved Gas Thrust Bearings and Grooved Gas Face Seals
,”
ASME J. Tribol.
,
115
(
3
), pp.
348
354
. 10.1115/1.2921642
15.
Heinrich
,
J. C.
, and
Zienkiewicz
,
O. C.
,
1977
, “
Quadratic Finite Element Schemes for Two-Dimensional Convective-Transport Problems
,”
Numer. Methods Eng.
,
11
(
12
), pp.
1831
1844
. 10.1002/nme.1620111207
16.
Hamrock
,
B. J.
,
Schmid
,
S. R.
, and
Jacobson
,
B. O.
,
2004
,
Fundamentals of Fluid Film Lubrication
,
CRC Press
,
New York
.
17.
Schiffmann
,
J.
,
2013
, “
Enhanced Groove Geometry for Herringbone Grooved Journal Bearings
,”
ASME J. Eng. Gas Turbines Power
,
135
(
10
), p.
102501
. 10.1115/1.4025035
18.
Guenat
,
E.
, and
Schiffmann
,
J.
,
2018
, “
Effects of Humid Air on Aerodynamic Journal Bearings
,”
Tribol. Int.
,
127
, pp.
333
340
. 10.1016/j.triboint.2018.06.002
19.
Lund
,
J. W.
,
1968
, “
Calculation of Stiffness and Damping Properties of Gas Bearings
,”
ASME J. Lubr. Tech.
,
90
(
4
), pp.
793
803
. 10.1115/1.3601723
20.
Guenat
,
E.
, and
Schiffmann
,
J.
,
2018
, “
Real-Gas Effects on Aerodynamic Bearings
,”
Tribol. Int.
,
120
, pp.
358
368
. 10.1016/j.triboint.2018.01.008
21.
Miller
,
B. A.
, and
Green
,
I.
,
2001
, “
Numerical Formulation for the Dynamic Analysis of Spiral-Grooved Gas Face Seals
,”
ASME J. Tribol.
,
123
(
2
), pp.
395
403
. 10.1115/1.1308015
22.
Bonneau
,
D.
, and
Absi
,
J.
,
1994
, “
Analysis of Aerodynamic Journal Bearings With Small Number of Herringbone Grooves by Finite Element Method
,”
ASME J. Tribol.
,
116
(
4
), pp.
698
704
. 10.1115/1.2927320
23.
Salari
,
K.
, and
Knupp
,
P.
,
2000
, “
Code Verification by the Method of Manufactured Solutions
.”
Technical Report
.
Office of Scientific and Technical Information (OSTI)
.
24.
Constantinescu
,
V. N.
, and
Castelli
,
V.
,
2011
, “
On the Local Compressibility Effect in Spiral-Groove Bearings
,”
ASME J. Lubr. Tech.
,
91
(
1
), pp.
79
86
. 10.1115/1.3554902
25.
Cunningham
,
R. E.
,
Fleming
,
D. P.
, and
Anderson
,
W. J.
,
1969
, “
Experimental Stability Studies of the Herringbone-Grooved Gas-Lubricated Journal Bearing
,”
ASME J. Lubr. Tech.
,
91
(
1
), pp.
52
57
. 10.1115/1.3554896
26.
Guenat
,
E.
, and
Schiffmann
,
J.
,
2019
, “
Multi-Objective Optimization of Grooved Gas Journal Bearings for Robustness in Manufacturing Tolerances
,”
Tribol. Trans.
,
62
(
6
), pp.
1041
1050
. 10.1080/10402004.2019.1642547
You do not currently have access to this content.