We investigate the effect of the shape potential on the frictional behavior transitions. The Tomlinson parameter for the deformable substrate potential is calculated theoretically and its influence on friction force is studied. Futhermore, effects of temperature and substrate shape on the tip jump probability are presented. We find two critical times, which characterize the tip dynamics. The first critical time is the time spent by the tip to reach next potential minimum and the second is the time at which the tip exhibits an equiprobability of forward and backward jump. We show that these critical times depend strongly on the substrate shape as well as on the temperature.
Issue Section:
Friction and Wear
References
1.
Binnig
, G.
, Quate
, C. F.
, and Gerber
, C.
, 1986
, “Atomic Force Microscope
,” Phys. Rev. Lett.
, 56
(9), pp. 930–933
.2.
Carpick
, R. W.
, and Salmeron
, M.
, 1997
, “Scratching the Surface: Fundamental Investigations of Tribology With Atomic Force Microscopy
,” Chem. Rev.
, 97
(4), pp. 1163
–1194
.3.
Johson
, K.
, and Woodhouse
, J.
, 1998
, “Stick-Slip Motion in the Atomic Force Microscope
,” Tribol. Lett.
, 5
(2–3), pp. 155
–160
.4.
Medyanik
, S.
, Liu
, W.
, Sang
, I. H.
, and Carpick
, R. W.
, 2006
, “Predictions and Observations of Multiple Slip Modes in Atomic-Scale Friction
,” Phys. Rev. Lett.
, 97
(13), p. 136106
.5.
Dong
, Y.
, Perez
, D.
, Voter
, A.
, and Martini
, A.
, 2011
, “The Roles of Statics and Dynamics in Determining Transitions Between Atomic Friction Regimes
,” Tribol. Lett.
, 42
(1), pp. 99
–107
.6.
Socoliuc
, A.
, Bennewitz
, R.
, Gnecco
, E.
, and Meyer
, E.
, 2004
, “Transition From Stick-Slip to Continuous Sliding in Atomic Friction: Entering a New Regime of Ultralow Friction
,” Phys. Rev. Lett.
, 92
(13), p. 134301
.7.
Gnecco
, E.
, Bennewitz
, R.
, Loppacher
, C.
, Bammerlin
, M.
, Meyer
, E.
, and Guntherodt
, H. J.
, 2000
, “Velocity Dependence of Atomic Friction
,” Phys. Rev. Lett.
, 84
(6), p. 1172
.8.
Sang
, Y.
, Dube
, M.
, and Grant
, M.
, 2001
, “Thermal Effects on Atomic Friction
,” Phys. Rev. Lett.
, 87
(17), p. 174301
.9.
Riedo
, E.
, Gnecco
, E.
, Bennewitz
, R.
, Meyer
, E.
, and Brune
, H.
, 2003
, “Interaction Potential and Hopping Dynamics Governing Sliding Friction
,” Phys. Rev. Lett.
, 91
(8), p. 084502
.10.
Jinesh
, K. B.
, Krylov
, S. Y.
, Valk
, H.
, Dienwiebel
, M.
, and Frenken
, J. W. M.
, 2008
, “Thermolubricity in Atomic-Scale Friction
,” Phys. Rev. B
, 78
(15), p. 155440
.11.
Schimersein
, A.
, Jansen
, L.
, Holscher
, H.
, and Fuchs
, H.
, 2006
, “Temperature Dependence of Point Contact Friction on Silicon
,” Appl. Phys. Lett.
, 88
(12), p. 123108
.12.
Tshiprut
, Z.
, Zelner
, S.
, and Urbakh
, M.
, 2009
, “Temperature-Induced Enhancement of Nanoscale Friction
,” Phys. Rev. Lett.
, 102
(13), p. 136102
.13.
Dong
, Y.
, Perez
, D.
, Gao
, H.
, and Martini
, A.
, 2012
, “Thermal Activation in Atomic Friction: Revisiting the Theoretical Analysis
,” J. Phys. Condens. Matter
, 24
(26), p. 265001
.14.
Einstein
, T. L.
, Hertz
, J.
, and Schrieffer
, J. R.
, 1980
, Theoretical Issues in Chemisorption
, J. R.
Smith
, ed., Springer
, Berlin
.15.
Chang
, W. R.
, Etsion
, I.
, and Bogy
, D. B.
, 1988
, “Static Friction Coefficient Model for Metallic Rough Surfaces
,” ASME J. Tribol.
, 110
(1
), pp. 57
–63
.16.
Johansson
, P. K.
, and Hjlemberg
, H.
, 1979
, “Charge Density Oscillations Around a Hydrogen Adatom on Simple Metal Surfaces and Their Importance for Adatom-Adatom Interaction
,” Surf. Sci.
, 80
, pp. 171–178.17.
Nordlander
, P.
, and Holmströn
, S.
, 1985
, “Indirect Electronic Interaction Between Hydrogen Atoms Adsorbed on Metals
,” Surf. Sci.
, 159
(2–3), pp. 443–465.18.
Fajardo
, O. Y.
, and Mazo
, J. J.
, 2010
, “Effects of Surface Disorder and Temperature on Atomic Friction
,” Phys. Rev. B
, 82
(3), p. 035435
.19.
Fajardo
, O. Y.
, and Mazo
, J. J.
, 2011
, “Surface Defects and Temperature on Atomic Friction
,” J. Phys. Condens. Matter
, 23
(35), p. 355008
.20.
Djuidje Kenmoe
, G.
, Jiotsa
, A. K.
, and Kofane
, T. C.
, 2004
, “Stick-Slip Motion in a Driven Two-Nonsinusoidal Remoissenet-Peyrard Potential
,” Phys. D
, 191
(1–2), pp. 31–48.21.
Furlong
, O. J.
, Manzi
, S. J.
, Pereyra
, V.
, Bustos
, V.
, and Tysoe
, W. T.
, 2010
, “Monte Carlo Simulations for Tomlinson Sliding Models for Non-Sinusoidal Periodic Potentials
,” Tribol. Lett.
, 39
(2), pp. 177–180.22.
Furlong
, O. J.
, Manzi
, S. J.
, Martini
, A.
, and Tysoe
, W. T.
, 2015
, “Influence of Potential Shape on Constant-Force Atomic-Scale Sliding Friction Models
,” Tribol. Lett.
, 60
, pp. 21.23.
Djuidje Kenmoe
, G.
, and Kofane
, T. C.
, 2011
, Scanning Probe Microscopy in Nanoscience and Nanotechnology
, Vol. 2
, Springer
, Berlin, p. 533
.24.
Motchongom Tingue
, M.
, Djuidje Kenmoe
, G.
, and Kofane
, T. C.
, 2011
, “Stick-Slip Motion and Static Friction in a Nonlinear Deformable Substrate Potential
,” Tribol. Lett.
, 43
(1) pp. 65–72.25.
Djuidje Kenmoe
, G.
, Takoutsing
, C. S.
, and Kofane
, T. C.
, 2015
, “Angular Dependence of Atomic Friction With Deformable Substrate
,” Eur. Phys. J. B
, 88
, p. 21
.26.
Djuidje Kenmoe
, G.
, Djiha Tchaptchet
, E.
, and Kofane
, T. C.
, 2014
, “Thermal Effect on Atomic Friction With Deformable Substrate
,” Tribol. Lett.
, 55
(3), pp. 533
–542
.27.
Djiha Tchaptchet
, E.
, and Djuidje Kenmoe
, G.
, 2015
, “Velocity and Forced Excitation Effects on Atomic Friction Force With Deformable Substrate
,” Nonlinear Dyn.
, 82
(1–2), pp. 961
–969
.28.
Peyrard
, M.
, and Remoissenet
, M.
, 1982
, “Solitonlike Excitations in a One-Dimensional Atomic Chain With a Nonlinear Deformable Substrate Potential
,” Phys. Rev. B
, 26
(6), p. 2884
.29.
Remoissenet
, M.
, and Peyrard
, M.
, 1984
, “Soliton Dynamics in New Models With Parametrized Periodic Double-Well and Asymmetric Substrate Potential
,” Phys. Rev. B
, 29
(6), pp. 3153
–3166
.30.
Braun
, O. M.
, Kivshar, Y. S., and Zelenskaya, I. I., 1990
, “Kinks in the Frenkel-Kontorova Model With Long-Range Interparticle Interactions
,” Phys. Rev. B
, 41
(10), pp. 7118
–7138
.31.
Braun, O. M., and Pashitsky, E. A.,
1985
, “Vibrational Excitation and Surface Diffusion of Hydrogen Atoms on a Tungsten
,” Phys. Chem. Mech. Surf.
, 3
, pp. 1989
–2003
.32.
Willis
, R. F.
, 1980
, Vibration Spectroscopy of Adsorbates
, Springer
, Berlin
.33.
Nguenang
, J. P.
, Kenfack Jiotsa
, A.
, and Kofané
, T. C.
, 2005
, “Nonlinear Dynamics for Magnetic Systems With a Single-Spin Potential With Variable Shapes
,” Eur. Phys. J. B
, 48
(4), pp. 519
–528
.34.
Woulache
, R. L.
, Yemélé
, D.
, and Kofané
, T. C.
, 2005
, “Thermal Nucleation of Kink-Antikink Pairs in the Presence of Impurities: The Case of a Remoissenet-Peyrard Substrate Potential
,” Phys. Rev. E
, 72
(3), p. 031604
.35.
Braun
, O. M.
, Dauxois
, T.
, and Peyrard
, M.
, 1996
, “Solitonic-Exchange of Surface Diffusion
,” Phys. Rev. B
, 54
(1), pp. 313
–320
.36.
Kasdin
, N.
, 1995
, “Runge-Kutta Algorithm for the Numerical Integration of Stochastic Differential Equations
,” J. Guid. Control Dyn.
, 18
(1), pp. 114–120.37.
Müser
, M. H.
, 2011
, “Velocity Dependence of Kinetic Friction in the Prandtl-Tomlinson Model
,” Phys. Rev. B
, 84
(12), p. 125419
.38.
Hänggi
, P.
, Talkner
, P.
, and Borkovec
, M.
, 1990
, “Reaction-Rate Theory: Fifty Years After Kramers
,” Rev. Mod. Phys.
, 62
(2), p. 251
.Copyright © 2018 by ASME
You do not currently have access to this content.