The asperities of rough surfaces have long been considered to be points higher than their immediate neighbors. Based on this concept, theories were developed for quantitatively understanding the elastic and plastic nature of contact between rough surfaces. Recently it has been recognized that the above model for asperities is inadequate. Consequently, all the models that have been constructed based on that model are inadequate too. In this paper, based on a newly developed multiple-point asperity model, the elastic and plastic contact problem between nominally flat surfaces is reformulated. This leads to finding the deformed area, and load produced by the contact. The model is developed for the general form of isotropic rough surfaces with arbitrary height distribution and autocorrelation function (ACF). The microcontact areas generated by each asperity contact are considered to be circles. The Gaussian distribution of heights and exponential ACF are considered as a benchmark to compare the results of the new model with the existing models. Using results from numerical models developed by other groups, the new model is validated.

1.
Zhuravlev
,
V. A.
, 1940, “
On Question of Theoretical Justification of the Amontons-Coulomb Law for Friction of Unlubricated Surfaces
,”
Zh. Tekh. Fiz.
0044-4642,
10
, pp.
1447
1452
.
2.
Greenwood
,
J. A.
, and
Williamson
,
J. B. P.
, 1966, “
Contact of Nominally Flat Surfaces
,”
Proc. R. Soc. London, Ser. A
1364-5021,
295
, pp.
300
319
.
3.
McCool
,
J. I.
, 1986, “
Comparison of Models for the Contact of Rough Surfaces
,”
Wear
0043-1648,
107
, pp.
37
60
.
4.
Whitehouse
,
D. J.
, and
Archard
,
J. F.
, 1970, “
The Properties of Random Surfaces of Significance in Their Contact
,”
Proc. R. Soc. London, Ser. A
1364-5021,
316
, pp.
97
121
.
5.
Onions
,
R. A.
, and
Archard
,
J. F.
, 1973, “
The Contact of Surfaces Having a Random Structure
,”
J. Phys. D
0022-3727,
6
, pp.
289
304
.
6.
Whitehouse
,
D. J.
, and
Phillips
,
M. J.
, 1978, “
Discrete Properties of Random Surfaces
,”
Philos. Trans. R. Soc. London, Ser. A
0962-8428,
290
, pp.
267
298
.
7.
Whitehouse
,
D. J.
, and
Phillips
,
M. J.
, 1982, “
Two-Dimensional Discrete Properties of Random Surfaces
,”
Philos. Trans. R. Soc. London, Ser. A
0962-8428,
305
, pp.
441
468
.
8.
Chang
,
W. R.
,
Etsion
,
I.
, and
Bogy
,
D. B.
, 1987, “
An Elastic-Plastic Model for the Contact of Rough Surfaces
,”
ASME J. Tribol.
0742-4787,
109
(
2
), pp.
257
263
.
9.
Kogut
,
L.
, and
Etsion
,
I.
, 2003, “
A Finite Element Based Elastic-Plastic Model for the Contact of Rough Surfaces
,”
Tribol. Trans.
1040-2004,
46
(
3
), pp.
383
390
.
10.
Liu
,
G.
,
Zhu
,
J.
,
Yu
,
L.
, and
Wang
,
Q.
, 2001, “
Elasto-Plastic Contact of Rough Surfaces
,”
Tribol. Trans.
1040-2004,
44
(
3
), pp.
437
443
.
11.
Zhao
,
Y.
,
Maietta
,
D. M.
, and
Chang
,
L.
, 2000. “
An Asperity Microcontact Model Incorporating the Transition from Elastic Deformation to Fully Plastic Flow
,”
ASME J. Tribol.
0742-4787,
122
(
1
), pp.
86
93
.
12.
Tian
,
X.
, and
Bhushan
,
B.
, 1996, “
A Numerical Three-Dimensional Model for the Contact of Rough Surfaces by Variational Principle
,”
ASME J. Tribol.
0742-4787,
118
(
1
), pp.
33
42
.
13.
Ren
,
N.
, and
Lee
,
S. C.
, 1994, “
The Effects of Surface Roughness and Topography on the Contact Behavior of Elastic Bodies
,”
ASME J. Tribol.
0742-4787,
116
(
4
), pp.
804
811
.
14.
Jackson
,
R. L.
, and
Green
,
I.
, 2005, “
A Finite Element Study of Elasto-Plastic Hemispherical Contact Against a Rigid Flat
,”
ASME J. Tribol.
0742-4787,
127
(
2
), pp.
343
354
.
15.
Nayak
,
P. R.
, 1971, “
Random Process Model of Rough Surfaces
,”
ASME J. Lubr. Technol.
0022-2305,
93
(
3
), pp.
398
407
.
16.
Nayak
,
P. R.
, 1973, “
Random Process Model of Rough Surfaces in Plastic Contact
,”
Wear
0043-1648,
26
(
3
), pp.
305
333
.
17.
Bush
,
A. W.
,
Gibson
,
R. D.
, and
Thomas
,
T. R.
, 1975, “
The Elastic Contact of a Rough Surface
,”
Wear
0043-1648,
35
, pp.
87
111
.
18.
Bush
,
A. W.
,
Gibson
,
R. D.
, and
Keogh
,
G. P.
, 1979, “
Strongly Anisotropic Rough Surfaces
,”
ASME J. Lubr. Technol.
0022-2305,
101
(
1
), pp.
15
20
.
19.
Greenwood
,
J. A.
, 1984, “
A Unified Theory of Surface Roughness
,”
Proc. R. Soc. London, Ser. A
1364-5021,
393
, pp.
133
157
.
20.
Majumdar
,
A.
, and
Bhushan
,
B.
, 1991, “
Fractal Model of Elastic-Plastic Contact Between Rough Surfaces
,”
ASME J. Tribol.
0742-4787,
113
(
1
), pp.
1
11
.
21.
Greenwood
,
J. A.
, and
Wu
,
J. J.
, 2001, “
Surface Roughness and Contact: An Apology
,”
Meccanica
0025-6455,
36
(
6
), pp.
617
630
.
22.
Archard
,
J. F.
, 1957, “
Elastic Deformation and the Laws of Friction
,”
Proc. R. Soc. London, Ser. A
1364-5021,
243
, pp.
190
205
.
23.
Hariri
,
A.
,
Zu
,
J. W.
, and
Ben Mrad
,
R.
, 2006, “
N-Point Asperity Model for Contact Between Nominally Flat Surfaces
,”
ASME J. Tribol.
0742-4787,
128
(
3
), pp.
505
514
.
24.
Maugis
,
D.
, 2000,
Contact, Adhesion and Rupture of Elastic Solids
,
Springer Verlag
, Berlin.
25.
Thomas
,
T. R.
, 1982,
Rough Surfaces
,
Longman
, London.
26.
Wu
,
J. J.
, 2001, “
The Properties of Asperities of Real Surfaces
,”
ASME J. Tribol.
0742-4787,
123
(
4
), pp.
872
883
.
27.
Johnson
,
K. L.
, 1985,
Contact Mechanics
,
Cambridge University Press
, Cambridge.
28.
Kogut
,
L.
, and
Etsion
,
I.
, 2002, “
Elastic-Plastic Contact Analysis of a Sphere and a Rigid Flat
,”
ASME J. Appl. Mech.
0021-8936,
69
(
5
), pp.
657
662
.
29.
Yu
,
N.
, and
Polycarpou
,
A. A.
, 2002, “
Contact of Rough Surfaces with Asymmetric Distribution of Asperity Heights
,”
ASME J. Tribol.
0742-4787,
124
(
2
), pp.
367
376
.
30.
Kogut
,
L.
, and
Etsion
,
I.
, 2000, “
The Contact of a Compliant Curved and a Nominally Flat Rough Surface
,”
Tribol. Trans.
1040-2004,
43
(
3
), pp.
507
513
.
31.
Horng
,
J. H.
, 1998, “
An Elliptic Elastic-Plastic Asperity Microcontact Model for Rough Surfaces
,”
ASME J. Tribol.
0742-4787,
120
(
1
), pp.
82
88
.
32.
Chang
,
W. R.
,
Etsion
,
I.
, and
Bogy
,
D. B.
, 1988, “
Static Friction Coefficient Model for Metallic Rough Surfaces
,”
ASME J. Tribol.
0742-4787,
110
(
1
), pp.
57
63
.
33.
Archard
,
J. F.
, 1953, “
Contact and Rubbing of Flat Surfaces
,”
J. Appl. Phys.
0021-8979,
24
(
8
), pp.
981
988
.
You do not currently have access to this content.