Abstract

A comprehensive method of thermoelastohydrodynamic (TEHD) lubrication analysis for dynamically loaded journal bearings is presented. An algorithm for mass conserving cavitation is included, and the effect of viscosity variation with the temperature is taken into account. The Reynolds equation in the film is solved using the finite element (FE) discretization. Thermal distortions as well as the elastic deformation of the bearing surfaces are computed using the FE method. The temperature of the lubrication film is treated as a time-dependent three-dimensional variable with a parabolic variation with respect to the film thickness. In order to compute the temperature of the film and its surrounding solid surfaces, a new heat flux conservation algorithm is proposed. An important element in this analysis is the consideration of thermal boundary layers for solids. It is known that the thermal transients on the film-solid interfaces and the dynamic loading have the same period (one cycle). However, beyond the thermal boundary layers, the time scale for thermal transient in the journal and bushing are several orders of magnitude greater than those for the oil film. The Fourier series approximates the instantaneous temperature fields in the solid boundary layers. In this way, the mean heat flux that passes into the solid can be computed and a steady-state heat conduction equation can be used to obtain thermal fields inside the solids. Finally, solving the complex problem of big-end connecting-rod bearing TEHD lubrication proves the efficiency of the algorithm. Oil film temperatures are found to vary considerably over the time and space.

1.
Fantino
,
B.
,
Frêne
,
J.
, and
du Parquet
,
J.
, 1979, “
Elastic Connecting-Rod Bearing With Piezoviscous Lubricant: Analysis of the Steady State Characteristics
,”
ASME J. Lubr. Technol.
0022-2305,
101
, pp.
190
220
.
2.
Fantino
,
B.
1981, “
Influence des Défauts de Forme et des Déformations Elastiques des Surfaces en Lubrification Hydrodynamique Sous Charges Statiques et Dynamiques
,” Ph.D. thesis No. 1-DE-8122, INSA de Lyon, France.
3.
Oh
,
K. P.
, and
Goenka
,
P. K.
, 1985, “
The Elastohydrodynamic Solution of Journal Bearing Under Dynamic Loading
,”
ASME J. Tribol.
0742-4787,
107
, pp.
389
395
.
4.
McIvor
,
J. D. C.
, and
Fenner
,
D. N.
, 1989, “
Finite Element Analysis of Dynamically Loaded Flexible Journal Bearings: A Fast Newton-Raphson Method
,”
ASME J. Tribol.
0742-4787,
111
, pp.
597
604
.
5.
Bonneau
,
D.
,
Guines
,
D.
,
Frêne
,
J.
, and
Toplosky
,
J.
, 1995, “
EHD Analysis, Including Structural Inertia Effects and Mass-Conserving Cavitation Model
,”
ASME J. Tribol.
0742-4787,
117
, pp.
403
410
.
6.
Boedo
,
S.
, and
Booker
,
J. F.
, 1997, “
Surface Roughness and Structural Inertia in a Mode-Based Mass-Conserving Elastohydrodynamic Lubrication Model
,”
ASME J. Tribol.
0742-4787,
119
, pp.
449
455
.
7.
Booker
,
J. F.
, and
Boedo
,
S.
, 2001, “
Finite Element Analysis of Elastic Engine Bearing Lubrication: Theory
,”
Rev. Euro. Eléments Finis
,
10
, pp.
705
724
.
8.
Rohde
,
S. M.
, and
Oh
,
K. P.
, 1975, “
A Thermoelastohydrodynamic Analysis of a Finite Slider Bearing
,”
ASME J. Tribol.
0742-4787,
97
, pp.
450
460
.
9.
Khonsari
,
M. M.
, and
Wang
,
S. H.
, 1991, “
On The Fluid-Solid Interaction in Reference to Thermoelastohydrodynamic Analysis of Journal Bearings
,”
ASME J. Tribol.
0742-4787,
113
, pp.
398
404
.
10.
Fillon
,
M.
,
Souchet
,
D.
, and
Frêne
,
J.
, 1990, “
Influence of Bearing Element Displacements on Thermohydrodynamic Characteristics of Tilting-Pad Journal Bearings
,”
Proc. Japan International Tribology Conference, ITC Nagoya’90
, pp.
635
640
.
11.
Fillon
,
M.
,
Bligoud
,
J.-C.
, and
Frêne
,
J.
, 1992, “
Experimental Study of Tilting-Pad Journal Bearings: Comparison With Theoretical Thermoelastohydrodynamic Results
,”
ASME J. Tribol.
0742-4787,
114
, pp.
579
588
.
12.
Ezzat
,
H. A.
, and
Rohde
,
S. M.
, 1974, “
Thermal Transients in Finite Slider Bearings
,”
ASME J. Lubr. Technol.
0022-2305,
96
, pp.
315
321
.
13.
Khonsari
,
M. M.
, and
Wang
,
S. H.
, 1992, “
Notes on Transient THD Effects in a Lubricating Film
,”
STLE Tribol. Trans.
1040-2004,
35
, pp.
177
183
.
14.
Paranjpe
,
R. S.
, and
Han
,
T. Y.
, 1995, “
A Transient Thermohydrodynamic Analysis Including Mass Conserving Cavitation for Dynamically Loaded Journal Bearings
,”
ASME J. Tribol.
0742-4787,
117
, pp.
369
378
.
15.
Piffeteau
,
S.
,
Souchet
,
D.
, and
Bonneau
,
D.
, 2000, “
Influence of Thermal and Elastic Deformation on Connecting-Rod Big End Bearing Lubrication Under Dynamic Loading
,”
ASME J. Tribol.
0742-4787,
122
, pp.
181
191
.
16.
Souchet
,
D.
, and
Piffeteau
,
S.
, 2001, “
Approche par la MEF de la Lubrification Thermoélastohydrodynamique des Paliers de Tête de Bielle
,”
Rev. Euro. des Eléments Finis
,
10
, pp.
815
847
.
17.
Kim
,
B. J.
, and
Kim
,
K. W.
, 2001, “
Thermoelastohydrodynamic Analysis of Connecting-Rod Bearing in Internal Combustion Engine
,”
ASME J. Tribol.
0742-4787,
121
, pp.
901
907
.
18.
Bonneau
,
D.
, and
Hajjam
,
M.
, 2001, “
Modélisation de la Rupture et de la Reformation des Films Lubrifiants Dans les Contacts Elastohydrodynamiques
Rev. Euro. Eléments Finis
,
10
, pp.
679
704
.
19.
Knight
,
J. D.
, 1987, “
Analysis of Axially Grooved Journal Bearings With Heat Transfer Effects
,”
ASLE Trans.
0569-8197,
30
, pp.
316
323
.
20.
Knight
,
J. D.
, 1988, “
Analysis of Tilting Pad Journal Bearings With Heat Transfer Effects
,”
Transaction of ASME
,
110
, pp.
128
133
.
21.
Knight
,
J. D.
, 1990, “
Prediction of Temperatures in Tilting Pad Journal Bearings
,”
STLE Tribol. Trans.
1040-2004,
33
, pp.
185
192
.
22.
Mitsui
,
J.
, 1987, “
A Study of Thermohydrodynamic Lubrication in a Circular Journal Bearing
,”
Tribol. Int.
0301-679X,
20
, pp.
331
340
.
You do not currently have access to this content.