A numerical model of surface temperature rise in elastohydrodynamic lubrication start up process is presented. The frictional heat flux is modeled as the product of lubricated contact pressure or solid contact pressure with its respective coefficient of friction. The temperature rise is calculated by numerically integrating the solution of point heat source moving over a half space. The constant speed restriction is removed to allow calculation of temperature rise on a surface with a variable speed. The FFT method is incorporated to speed up the temperature rise calculation. Surface temperature rise in elastohydrodynamic lubrication start up condition is calculated, for the case when speed increase from zero to desired speed occurs in one step and the case when speed is linearly increased to desired speed.

1.
Blok, H., 1937, “Theoretical Study of Temperature Rise at Surfaces of Actual Contact Under Oiliness Lubricating Conditions,” Proceedings of the General Discussion on Lubrication and Lubricants, 2, pp. 222–235.
2.
Jaeger
,
J. C.
,
1942
, “
Moving Source of Heat and the Temperature at Sliding Contacts
,”
J. Proc. R. Soc. N. S. W.
,
76
, pp.
203
224
.
3.
Francis
,
H. A.
,
1971
, “
Interfacial Temperature Distribution Within a Sliding Hertzian Contact
,”
ASLE Trans.
,
14
, pp.
41
54
.
4.
Tian
,
X.
, and
Kennedy
,
F. E.
, Jr.
,
1994
, “
Maximum and Average Flash Temperatures in Sliding Contacts
,”
ASME J. Tribol.
,
116
, pp.
167
174
.
5.
Bos
,
J.
, and
Moes
,
H.
,
1995
, “
Frictional Heating of Tribological Contacts
,”
ASME J. Tribol.
,
117
, pp.
171
177
.
6.
Gecim
,
B.
, and
Winer
,
W. O.
,
1985
, “
Transient Temperatures in the Vicinity of an Asperity Contact
,”
ASME J. Tribol.
,
107
, pp.
333
342
.
7.
Qiu
,
L.
, and
Cheng
,
H. S.
,
1998
, “
Temperature Rise Simulation of Three-Dimensional Rough Surfaces in Mixed Lubricated Contact
,”
ASME J. Tribol.
,
120
, pp.
310
318
.
8.
Jiang
,
X.
,
Hua
,
D. Y.
,
Cheng
,
H. S.
,
Ai
,
X.
, and
Lee
,
S. C.
,
1999
, “
A Mixed Elastohydro Dynamic Lubrication Model With Asperity Contact
,”
ASME J. Tribol.
,
121
, pp.
481
491
.
9.
Gao
,
J.
,
Lee
,
Si C.
,
Ai
,
X.
, and
Nixon
,
H.
,
2000
, “
An FFT-Based Transient Flash Temperature Model for General Three-Dimensional Rough Surface Contacts
,”
ASME J. Tribol.
,
122
, pp.
519
523
.
10.
Zhao
,
J.
,
Sadeghi
,
F.
, and
Hoeprich
,
M. H.
,
2001
, “
Analysis of EHL Circular Contact Start Up: Part I—Mixed Contact Model With Pressure and Film Thickness Results
,”
ASME J. Tribol.
,
123
, pp.
67
74
.
11.
Carslaw, H. S., and Jaeger, J. C., 1959, Conduction of Heat in Solids, 2nd Ed., Oxford University Press, London, UK.
12.
Ren
,
N.
, and
Lee
,
Si C.
,
1993
, “
Contact Simulation of Three-Dimensional Rough Surfaces Using Moving Grid Method
,”
ASME J. Tribol.
,
115
, pp.
597
601
.
13.
Press, W. H., Teukolsky, S. A., Vetterling, W. T., and Flannery, B. P., 1992, Numerical Recipes in C, 2nd Ed., Cambridge University Press, Cambridge, UK.
You do not currently have access to this content.