The effect of whirl frequency and lubricant viscosity on the dynamic pressures and force response of an open end and a partially sealed squeeze film dampers (SFD) with a radial clearance of 0.38 mm is determined experimentally. The experiments are carried out in a damper test rig executing circular centered orbits and for whirl frequencies ranging from 33 to 83 Hz. The experimental results show that the sealed SFD configuration produces larger tangential forces than the open end SFD. The tangential (damping) force increases linearly with increasing whirl frequency. For this radial clearance fluid inertia effects in the damper are found to be negligible since the squeeze film Reynolds number is less than 1.20. Cavitation was observed in both damper configurations at high frequencies and high lubricant viscosities. This condition limited the rate of increment of the damping (tangential) force with increasing frequency and reduced the radial force when lubricant viscosity increased.

This content is only available via PDF.
You do not currently have access to this content.