An experimental study quantifying the thermal behavior of a mechanical seal is performed. Temperature measurements are obtained using embedded thermocouples within the stator at different locations, and the tests are carried out at different sealed fluid pressures and rotary shaft speeds. Furthermore, an inverse method is used to calculate the heat transfer from the measured local temperatures. The Nusselt number is calculated along the wetted surface as a function of operating conditions; the obtained values are discussed in comparison to previous works. Our results demonstrate that the amplitude of the thermal effects is highly dependent on the operating conditions. The temperature rise being increased by 600% when the rotating speed is raised from 1000 to 6000 rpm and the fluid pressure from 1 to 5 MPa. Moreover, the temperature can vary by several degrees when the distance from the wetted diameter (cooled by convection) and the friction face (heat source) is varied from less than 2 mm.

References

1.
Orcutt
,
F.
,
1969
, “
An Investigation of the Operation and Failure of Mechanical Face Seals
,”
ASME J. Lubr. Technol.
,
91
(
4
), pp.
713
725
.
2.
Tournerie
,
B.
,
Reungoat
,
D.
, and
Frêne
,
J.
,
1991
, “
Temperature Measurements by Infrared Thermography in the Interface of a Radial Face Seal
,”
ASME J. Tribol.
,
113
(
3
), pp.
571
576
.
3.
Reungoat
,
D.
, and
Tournerie
,
B.
,
1994
, “
Temperature Measurement by Infrared Thermography in a Lubricated Contact: Radiometric Analysis
,”
Eurotherm Seminar 42
: Quantitative InfraRed Thermography, Editions Européennes Thermique et Industrie.
4.
Brunetière
,
N.
,
Tournerie
,
B.
, and
Frêne
,
J.
,
2003
, “
TEHD Lubrication of Mechanical Face Seals in Stable Tracking Mode. Part 1—Numerical Model and Experiments
,”
ASME J. Tribol.
,
125
(
3
), pp.
608
616
.
5.
Migout
,
F.
,
Brunetière
,
N.
, and
Tournerie
,
B.
,
2015
, “
Study of the Fluid Film Vaporization in the Interface of a Mechanical Face Seal
,”
Tribol. Int.
,
92
, pp.
84
95
.
6.
Doane
,
J.
,
Myrum
,
T.
, and
Beard
,
J.
,
1991
, “
An Experimental-Computational Investigation of the Heat Transfer in Mechanical Face Seals International
,”
J. Heat Mass Transfer
,
34
(
4–5
), pp.
1027
1041
.
7.
Phillips
,
R.
,
Jacobs
,
L.
, and
Merati
,
P.
,
1997
, “
Experimental Determination of the Thermal Characteristics of a Mechanical Seal and Its Operating Environment
,”
Tribol. Trans.
,
40
(
4
), pp.
559
568
.
8.
Lebeck
,
A.
,
Nygren
,
M.
,
Shirazi
,
S.
, and
Soulisa
,
R.
,
1998
, “
Fluid Temperature and Film Coefficient Prediction and Measurement in Mechanical Face Seals—Experimental Results
,”
Tribol. Trans.
,
41
(
4
), pp.
411
422
.
9.
Lebeck
,
A.
,
1991
,
Principle and Design of Mechanical Face Seals
,
Wiley
,
New York
.
10.
Gazley
,
G.
,
1958
, “
Heat-Transfer Characteristics of the Rotational and Axial Flow Between Concentric Cylinders
,”
Trans. ASME
,
80
, pp.
79
90
.
11.
Tachibana
,
F.
,
Fukui
,
S.
, and
Mitsumura
,
H.
,
1960
, “
Heat Transfer in an Annulus With an Inner Rotating Cylinder
,”
Bull. JSME
,
3
(
9
), pp.
119
123
.
12.
Tachibana
,
F.
, and
Fukui
,
S.
,
1964
, “
Convective Heat Transfer of the Rotational and Axial Flow Between Two Concentric Cylinders
,”
Bull. JSME
,
7
(
26
), pp.
385
391
.
13.
Becker
,
K.
,
1963
, “
Measurement of Convective Heat Transfer From a Horizontal Cylinder Rotating in a Tank of Water
,”
Int. J. Heat Mass Transfer
,
6
(
12
), pp.
1053
1062
.
14.
Childs
,
P.
, and
Long
,
C.
,
1996
, “
A Review of Forced Convective Heat Transfer in Stationary and Rotating Annuli
,”
Proc. Inst. Mech. Eng., Part C
,
210
(2), pp.
123
134
.
15.
Shirazi
,
S.
,
Soulisa
,
R.
,
Lebeck
,
A.
, and
Nygren
,
M.
,
1998
, “
Fluid Temperature and Film Coefficient Prediction and Measurement in Mechanical Face Seals—Numerical Results
,”
Tribol. Trans.
,
41
(
4
), pp.
459
470
.
16.
Merati
,
P.
,
Okita
,
N.
,
Phillips
,
R.
, and
Jacobs
,
L.
,
1999
, “
Experimental and Computational Investigation of Flow and Thermal Behavior of Mechanical Seal
,”
Tribol. Trans.
,
42
(
4
), pp.
731
738
.
17.
Brunetière
,
N.
, and
Modolo
,
B.
,
2009
, “
Heat Transfer in a Mechanical Face Seal
,”
Int. J. Therm. Sci.
,
48
(
4
), pp.
781
794
.
18.
Luan
,
Z.
, and
Khonsari
,
M.
,
2009
, “
Heat Transfer Correlations for Laminar Flows Within a Mechanical Seal Chamber
,”
Tribol. Int.
,
42
(
5
), pp.
770
778
.
19.
Luan
,
Z.
, and
Khonsari
,
M.
,
2009
, “
Analysis of Conjugate Heat Transfer and Turbulent Flow in Mechanical Seals
,”
Tribol. Int.
,
42
(
5
), pp.
762
769
.
20.
Satyamurthy
,
P.
,
Marwah
,
R.
,
Venkatramani
,
N.
, and
Rohatgi
,
V.
,
1979
, “
Estimation of Error in Steady-State Temperature Measurement Due to Conduction Along the Thermocouple Leads
,”
Int. J. Heat Mass Transfer
,
22
(
7
), pp.
1151
1154
.
21.
Ayadi
,
K.
,
Brunetière
,
N.
,
Tournerie
,
B.
, and
Maoui
,
A.
,
2015
, “
Experimental and Numerical Study of the Lubrication Regimes of a Liquid Mechanical Seal
,”
Tribol. Int.
,
92
, pp.
96
108
.
22.
Blasiak
,
S.
,
Laski
,
P.
, and
Takosoglu
,
J.
,
2013
, “
Parametric Analysis of Heat Transfer in Non-Contacting Face Seals
,”
Int. J. Heat Mass Transfer
,
57
(
1
), pp.
22
31
.
23.
Bonnans
,
J.
,
Gilbert
,
J.
,
Lemaréchal
,
C.
, and
Sagastizabal
,
C.
,
1997
,
Optimisation Numérique-Aspects Théoriques et Pratiques
,
Springer-Verlag
, Berlin.
You do not currently have access to this content.