The present study investigates mixed convection inside a Cu–water nanofluid filled trapezoidal cavity under the effect of a constant magnetic field. The mixed convection is achieved by the action of lid-driving of the right hot inclined side wall in the aiding or the opposing direction. The left inclined side wall is fixed and kept isothermal at a cold temperature. The horizontal top and bottom walls are fixed and thermally insulated. The magnetic field is imposed horizontally. The problem is formulated using the stream function-vorticity procedure and solved numerically using an efficient upwind finite-difference method. The studied parameters are: the Richardson number Ri = (0.01–10), the Hartman number Ha = (0–100), the volume fraction of Cu nanoparticles φ = (0–0.05), and the inclination angle of side walls Φ = (66 deg, 70 deg, 80 deg). The results have shown that the suppression effect of the magnetic field for the aiding case is greater than that for the opposing case. Meanwhile, the enhancement of the Nusselt number due to the presence of the Cu nanoparticles is greater for opposing lid-driven case.

References

1.
Schreiber
,
R.
, and
Keller
,
H. B.
,
1983
, “
Driven Cavity Flows by Efficient Numerical Techniques
,”
J. Comput. Phys.
,
49
(
2
), pp.
310
333
.
2.
Barragy
,
E.
, and
Carey
,
G. F.
,
1997
, “
Stream Function-Vorticity Driven Cavity Solution Using p Finite Elements
,”
Comput. Fluids
,
26
(
5
), pp.
453
468
.
3.
Wan
,
D. C.
,
Patnaik
,
B. S. V.
, and
Wei
,
G. W.
,
2001
, “
A New Benchmark Quality Solution for the Buoyancy-Driven Cavity by Discrete Singular Convolution
,”
Numer. Heat Transfer, Part B
,
40
(3), pp.
199
228
.
4.
Glowinski
,
R.
,
Guidoboni
,
G.
, and
Pan
,
T. W.
,
2006
, “
Wall-Driven Incompressible Viscous Flow in a Two-Dimensional Semi-Circular Cavity
,”
J. Comput. Phys.
,
216
(
1
), pp.
76
91
.
5.
Erturk
,
E.
, and
Dursun
,
B.
,
2007
, “
Numerical Solutions of 2-D Steady Incompressible Flow in a Driven Skewed Cavity
,”
Math. Mech.
,
87
, pp.
377
392
.
6.
Torrance
,
K.
,
Davis
,
R.
,
Eike
,
K.
,
Gill
,
P.
,
Gutman
,
D.
,
Hsui
,
A.
,
Lyons
,
S.
, and
Zien
,
H.
,
1972
, “
Cavity Flows Driven By Buoyancy and Shear
,”
J. Fluid Mech.
,
51
(02), pp.
221
231
.
7.
Iwatsu
,
R.
,
Hyun
,
J. M.
, and
Kuwahara
,
K.
,
1990
, “
Analyses of Three-Dimensional Low Calculations in a Driven Cavity
,”
Fluid Dyn. Res.
,
6
(
2
), pp.
91
102
.
8.
Iwatsu
,
R.
,
Hyun
,
J. M.
, and
Kuwahara
,
K.
,
1993
, “
Mixed Convection in a Driven Cavity With a Stable Vertical Temperature Gradient
,”
Int. J. Heat Mass Transfer
,
36
(
6
), pp.
1601
1608
.
9.
Aydin
,
O.
,
1999
, “
Aiding and Opposing Mechanisms of Mixed Convection in a Shear- and Buoyancy-Driven Cavity
,”
Int. Commun. Heat Mass Transfer
,
26
(7), pp.
1019
1028
.
10.
Chamkha
,
A. J.
,
2002
, “
Hydromagnetic Combined Convection Flow in a Vertical Lid Driven Cavity With Internal Heat Generation or Absorption
,”
Numer. Heat Transfer, Part A
,
41
(
5
), pp.
529
546
.
11.
Al-Amiri
,
A. M.
,
Khanafer
,
K. M.
, and
Pop
,
I.
,
2007
, “
Numerical Simulation of Combined Thermal and Mass Transport in a Square Lid-Driven Cavity
,”
Int. J. Therm. Sci.
,
46
(
7
), pp.
662
671
.
12.
Sharif
,
M. A. R.
,
2007
, “
Laminar Mixed Convection in Shallow Inclined Driven Cavities With Hot Moving Lid on Top and Cooled From Bottom
,”
Appl. Therm. Eng.
,
27
, pp.
1036
1042
.
13.
Waheed
,
M. A.
,
2009
, “
Mixed Convective Heat Transfer in Rectangular Enclosures Driven by a Continuously Moving Horizontal Plate
,”
Int. J. Heat Mass Transfer
,
52
, pp.
5055
5063
.
14.
Koseff
,
J. R.
, and
Street
,
R. L.
,
1984
, “
The Lid-Driven Cavity Flow: A Synthesis of Qualitative and Quantitative Observations
,”
ASME J. Fluid Eng.
,
106
(
4
), pp.
390
398
.
15.
Mohamad
,
A. A.
, and
Viskanta
,
R.
,
1993
, “
Flow and Thermal Structures in a Lid-Driven Cavity Heated From Below
,”
Fluid Dyn. Res.
,
12
(
3
), pp.
173
184
.
16.
Tiwari
,
R. K.
, and
Das
,
M. K.
,
2007
, “
Heat Transfer Augmentation in a Two-Sided Lid-Driven Differentially Heated Square Cavity Utilizing Nanofluids
,”
Int. J. Heat Mass Transfer
,
50
, pp.
2002
2018
.
17.
Talebi
,
F.
,
Mahmoudi
,
A. H.
, and
Shahi
,
M.
,
2010
, “
Numerical Study of Mixed Convection Flows in a Square Lid-Driven Cavity Utilizing Nanofluid
,”
Int. Commu. Heat Mass Transfer
,
37
(
1
), pp.
79
90
.
18.
Alinia
,
M.
,
Ganji
,
D. D.
, and
Gorji-Bandpy
,
M.
,
2011
, “
Numerical Study of Mixed Convection in an Inclined Two Sided Lid Driven Cavity Filled With Nanofluid Using Two-Phase Mixture Model
,”
Int. Commun. Heat Mass Transfer
,
38
(
10
), pp.
1428
1435
.
19.
Salari
,
M.
,
Mohammad Tabar
,
M.
,
Mohammad Tabar
,
A.
, and
Danesh
,
H. A.
,
2012
, “
Mixed Convection of Nanofluid Flows in a Square Lid-Driven Cavity Heated Partially From Both the Bottom and Side Walls
,”
Numer. Heat Transfer, Part A
,
62
(2), pp.
158
177
.
20.
Chamkha
,
A. J.
, and
Abu-Nada
,
E.
,
2012
, “
Mixed Convection Flow in Single-and Double Lid Driven Square Cavities Filled With Water–Al2O3 Nanofluid: Effect of Viscosity Models
,”
Eur. J. Mech. B Fluids
,
36
, pp.
82
96
.
21.
Abbasian Arani
,
A. A.
,
Mazrouei Sebdani
,
S.
,
Mahmoodi
,
M.
,
Ardeshiri
,
A.
, and
Aliakbari
,
M.
,
2012
, “
Numerical Study of Mixed Convection Flow in a Lid-Driven Cavity With Sinusoidal Heating on Sidewalls Using Nanofluid
,”
Superlattices Microstruct.
,
51
(
6
), pp.
893
911
.
22.
Nasrin
,
R.
,
Alim
,
M. A.
, and
Chamkha
,
A. J.
,
2012
, “
Combined Convection Flow in Triangular Wavy Chamber Filled With Water–CuO Nanofluid: Effect of Viscosity Models
,”
Int. Commun. Heat Mass Transfer
,
39
(
8
), pp.
1226
1236
.
23.
Cho
,
C. C.
,
Chen
,
C. L.
, and
Chen
,
C. K.
,
2013
, “
Mixed Convection Heat Transfer Performance of Water-Based Nanofluids in Lid-Driven Cavity With Wavy Surfaces
,”
Int. J. Therm. Sci.
,
68
, pp.
181
190
.
24.
Sivasankaran
,
S.
,
Malleswaran
,
A.
,
Lee
,
J.
, and
Sundar
,
P.
,
2011
, “
Hydro-Magnetic Combined Convection in a Lid-Driven Cavity With Sinusoidal, Boundary Conditions on Both Sidewalls
,”
Int. J. Heat Mass Transfer
,
54
, pp.
512
525
.
25.
Ghasemi
,
B.
,
Aminossadati
,
S. M.
, and
Raisi
,
A.
,
2011
, “
Magnetic Field Effect on Natural Convection in a Nanofluid-Filled Square Enclosure
,”
Int. J. Therm. Sci.
,
50
(
9
), pp.
1748
1756
.
26.
Kadri
,
S.
,
Mehdaoui
,
R.
, and
Elmir
,
M.
,
2012
, “
A Vertical Magneto-Convection in Square Cavity Containing a Al2O3+Water Nanofluid: Cooling of Electronic Compounds
,”
Energy Procedia
,
18
, pp.
724
732
.
27.
Chatterjee
,
D.
,
Halder
,
P.
,
Mondal
,
S.
, and
Bhattacharjee
,
S.
,
2013
, “
Magneto Convective Transport in a Vertical Lid-Driven Cavity Including a Heat Conducting Square Cylinder With Joule Heating
,”
Numer. Heat Transfer, Part A
,
64
(
12
), pp.
1050
1071
.
28.
Migeon
,
C.
,
Texier
,
A.
, and
Pineau
,
G.
,
2000
, “
Effects of Lid-Driven Cavity Shape on the Flow Establishment Phase
,”
J. Fluid Struct.
,
14
(
4
), pp.
469
488
.
29.
Mercan
,
H.
, and
Atalik
,
K.
,
2009
, “
Vortex Formation in Lid-Driven Arc-Shape Cavity Flows at High Reynolds Numbers
,”
Eur. J. Mech. B Fluids
,
28
(
1
), pp.
61
71
.
30.
Saha
,
S.
,
Saha
,
G.
,
Islam
,
Md. Q.
, and
Raju
,
M. C.
,
2010
, “
Mixed Convection Inside a Lid-Driven Parallelogram Enclosure With Isoflux Heating From Below
,”
J. Future Eng. Technol.
,
6
, pp.
14
22
.
31.
Rahman
,
M. M.
,
Billah
,
M.
,
Rahman
,
A. T. M. M.
,
Kalam
,
M. A.
, and
Ahsan
,
A.
,
2011
, “
Numerical Investigation of Heat Transfer Enhancement of Nanofluids in an Inclined Lid-Driven Triangular Enclosure
,”
Int. Commun. Heat Mass Transfer
,
38
(
10
), pp.
1360
1367
.
32.
Ghasemi
,
B.
, and
Aminossadati
,
S. M.
,
2010
, “
Mixed Convection in a Lid-Driven Triangular Enclosure Filled With Nanofluids
,”
Int. Commun. Heat Mass Transfer
,
37
(
8
), pp.
1142
1148
33.
Kumar
,
S.
,
2004
, “
Natural Convective Heat Transfer in Trapezoidal Enclosure of Box-Type Solar Cooker
,”
Renewable Energy
,
29
(
2
), pp.
211
222
.
34.
Mamun
,
M. A. H.
,
Tanim
,
T. R.
,
Rahman
,
M. M.
,
Saidur
,
R.
, and
Nagata
,
Sh.
,
2011
, “
Analysis of Mixed Convection in a Lid Driven Trapezoidal Cavity
,”
Convection and Conduction Heat Transfer
,
A.
Ahsan
, ed.,
InTech
,
Rjeka, Croatia
, pp.
55
82
.
35.
Mahmoudi
,
A. H.
,
Pop
,
I.
,
Shahi
,
M.
, and
Talebi
,
F.
,
2013
, “
MHD Natural Convection and Entropy Generation in a Trapezoidal Enclosure Using Cu–Water Nanofluid
,”
Comput. Fluids
,
72
, pp.
46
62
.
36.
Bhattacharya
,
M.
,
Basak
,
T.
,
Oztop
,
H. F.
, and
Varol
,
Y.
,
2013
, “
Mixed Convection and Role of Multiple Solutions in Lid-Driven Trapezoidal Enclosures
,”
Int. J. Heat Mass Transfer
,
63
, pp.
366
388
.
37.
Yu
,
W.
, and
Choi
,
S. U. S.
,
2003
, “
The Role of Interfacial Layers in the Enhanced Thermal Conductivity of Nanofluids: A Renovated Maxwell Model
,”
J. Nanopart. Res.
,
5
, pp.
167
171
.
38.
Corcione
,
M.
,
2011
, “
Empirical Correlating Equations for Predicting the Effective Thermal Conductivity and Dynamic Viscosity of Nanofluids
,”
Energy Convers. Manage.
,
52
(
1
), pp.
789
793
.
39.
Abbasian Arani
,
A. A.
, and
Amani
,
J.
,
2013
, “
Experimental Investigation of Diameter Effect on Heat Transfer Performance and Pressure Drop of TiO2–Water Nanofluid
,”
Exp. Therm. Fluid Sci.
,
44
, pp.
520
533
.
40.
Maxwell
,
J. C.
,
1904
,
A Treatise on Electricity and Magnetism
, 2nd ed.,
Oxford University Press
,
Cambridge, UK
, pp.
435
441
.
41.
Fletcher
,
C. A. J.
,
1988
,
Computational Techniques for Fluid Dynamics 2
, 2nd ed.,
Springer-Verlag
,
Berlin
.
You do not currently have access to this content.