In this paper, a computational fluid dynamics (CFD) assisted control system design methodology has been described in detail. The entire design and evaluation procedure has been illustrated through a feedback control system synthesis for a central processing unit (CPU) chip cooling system. The design methodology starts with a full-scale CFD simulation of the nonlinear dynamic process to generate the input and output databases of the process. Using this data set, linear dynamic models around specified operating points are obtained using system identification techniques. Based on these models, one can design appropriate control systems to meet the required closed-loop control system specifications. To illustrate the effectiveness of this technique, it has been used to design a controller for a PC chip cooling system. In particular, the coupling issues between ‘real-time’ dynamic controllers with non real-time CFD simulation have been resolved. A physical experimental test bench based on a cooling system of a Pentium III CPU has been constructed. The feedback linear control systems designed by the proposed CFD approach have been evaluated experimentally for six CPU load conditions.

References

1.
Skadron
,
K.
,
2004
, “
Hybrid Architectural Dynamic Thermal Management
,”
Proceedings of Design, Automation and Test in Europe Conference and Exhibition
,
Paris, France
, Feb. 16–20.
2.
Gunther
,
S.
,
Binns
,
F.
,
Carmean
,
D. M.
, and
Hall
,
J. C.
,
2001
, “
Managing the Impact of Increasing Microprocessor Power Consumption
,”
Intel Technol. J.
,
5
(
1
), pp.
1–9
.
3.
Intel Corp.
,
2000
, Intel Pentium 4 Processor in the 423-pin Package: Thermal Design Guidelines.
4.
Zimbeck
,
W.
,
Slavik
,
G.
,
Cennamo
,
J.
,
Kang
,
S.
,
Yun
,
J.
, and
Kroliczek
,
E.
,
2008
, “
Loop Heat Pipe Technology for Cooling Computer Servers
,”
Proceedings of 11th Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems
,”
Orlando, FL
, May 28–31.
5.
Tsai
,
M. C.
,
Kang
,
S. W.
, and
Lin
,
C. H.
,
2009
, “
A Novel Copper Bead Heat Sink for Computer Cooling
,”
Proceedings of 25th Annual IEEE Semiconductor Thermal Measurement and Management Symposium
,
San Jose, CA.
, Mar. 15.
6.
Wang
,
S. K.
,
Hung
,
T. C.
,
Pei
,
B. S.
,
Chen
,
A. F.
, and
Du
,
J. L.
,
2005
, “
A Numerical Study of the Enhancement of Chip Cooling via a Flow-Disturbing Obstruction Block
,”
ASME J. Electron. Packag.
,
127
, pp.
523
529
.10.1115/1.2070089
7.
Wang
,
E. N.
,
Zhang
,
L.
,
Jiang
,
L.
,
Koo
,
J. M.
,
Maveety
,
J. G.
,
Sanchez
,
E. A.
,
Goodson
,
K. E.
, and
Kenny
,
T. W.
,
2004
, “
Micromachined Jets for Liquid Impingement Cooling of VLSI Chips
,”
J. Microelectromech. Syst.
,
13
, pp.
833
842
.10.1109/JMEMS.2004.835768
8.
Chu
,
R. C.
,
Simons
,
R. E.
,
Ellsworth
,
M. J.
,
Schmidt
,
R. R.
, and
Cozzolino
,
V.
,
2004
, “
Review of Cooling Technologies
,”
IEEE Trans. Device Mater. Reliab.
,
4
, pp.
568
585
.10.1109/TDMR.2004.840855
9.
Zhou
,
J. H.
, and
Yang
,
C. X.
,
2008
, “
Design and Simulation of the CPU Fan and Heat Sinks
,”
IEEE Trans. Compon. Packag. Technol.
,
31
, pp.
890
903
.10.1109/TCAPT.2008.921630
10.
Anandakrishnan
,
M.
, and
Balaji
,
C.
,
2008
, “
CFD Simulations of Thermal and Flow Fields Inside a Desktop Personal Computer Cabin With Multi-Core Processors
,”
Eng. Appl. Comput. Fluid Mech.
,
3
, pp.
277
288
. Available at: http://www.researchgate.net/publication/228467608
11.
Orhan
,
O. E.
, and
Tari
,
I.
,
2008
, “
Numerical Investigation on Cooling of Small Form Factor Computer Cases
,”
Eng. Appl. Comput. Fluid Mech.
,
2
, pp.
427
435
. Available at: http://www.academia.edu/823829
12.
Ozturk
,
E.
, and
Tari
,
I.
,
2007
, “
CFD Modeling of Forced Cooling of Computer Chassis
,”
Eng. Appl. Comput. Fluid Mech
,
1
, pp.
304
313
.
13.
Kim
,
W. N.
,
Kim
,
S. Y.
, and
Kang
,
B. H.
,
2004
, “
CFD Simulation of Thermal Dissipation from Fan-Added Plate Fin and Offset Strip Fin Heat Sinks
,”
Proceedings of 9th Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems
,
Las Vegas, NV
, June 1–4.
14.
Intel Corp.
,
2001
, Pentium III Processor for the PGA370 Socket at 500 MHz to 1.13 GHz.
15.
Intel Corp.
,
2006
, Thermal and Mechanical Design Guidelines-For the Intel Pentium D processor 800 and 900 Sequences.
16.
AMD, Inc.
,
2003
, AMD Athlon™ 64 and AMD Opteron™ Processors Thermal Design Guide.
17.
Launder
,
B. E.
, and
Spalding
,
D. B.
,
1974
, “
The Numerical Computation of Turbulent Flow
,”
Comput. Methods Appl. Mech. Eng.
,
3
, pp.
269
289
.10.1016/0045-7825(74)90029-2
18.
Jones
,
W. P.
, and
Whitelaw
,
J. H.
,
1982
, “
Calculation Methods for Reacting Turbulent Flows: A Review
,”
Combust. Flame
,
48
, pp.
1
26
.10.1016/0010-2180(82)90112-2
19.
Peters
,
A. A. F.
, and
Weber
,
R.
,
1995
, “
Mathematical Modeling of a 2.25 MWt Swirling Natural Gas Flame, Part1: Eddy Break-up Concept for Turbulent Combustion; Probability Density Function Approach for Nitric Oxide Formation
,”
Combust. Sci. Technol.
,
110–111
, pp.
67
101
.10.1080/00102209508951917
20.
Patankar
,
S. V.
,
1980
,
Numerical Heat Transfer and Fluid Flow
,
Hemisphere Publishing Co.
,
Washington, DC
.
21.
Legend Corp.
,
2004
, 865 GV Motherboard Thermal Management Guide.
You do not currently have access to this content.