In the past ten years, one has seen rapid advancements in heat and mass transport applications in biology and medicine. The research activities have been shifted from fundamental development of better theoretical models accurately describing the thermal effect of local vasculature geometry and blood perfusion rate in the 1980s and 1990s to emphases on biotransport research with clear clinical applications and on how to utilize theoretical simulation and imaging techniques for better designing treatment protocols in those applications. This review will first describe briefly technical advancements in bioheat and mass transfer in the past several decades and then focus on two important applications in bioheat and mass transport covering different temperature ranges: hypothermia in brain injury and hyperthermia in tissue thermal damage. The contributions of nanotechnology, imaging tools, and multiscale modeling to the advancements will be discussed in the review.

1.
Pennes
,
H. H.
, 1948, “
Analysis of Tissue and Arterial Blood Temperatures in the Resting Human Forearm
,”
J. Appl. Physiol.
0021-8987,
1
, pp.
93
122
.
2.
Chato
,
J.
, 1980, “
Heat Transfer to Blood Vessels
,”
ASME J. Biomech. Eng.
0148-0731,
102
, pp.
110
118
.
3.
Chen
,
M. M.
, and
Holmes
,
K. R.
, 1980, “
Microvascular Contributions to Tissue Heat Transfer
,”
Ann. N.Y. Acad. Sci.
0077-8923,
335
, pp.
137
150
.
4.
Weinbaum
,
S.
,
Jiji
,
L. M.
, and
Lemons
,
D. E.
, 1984, “
Theory and Experiment for the Effect of Vascular Microstructure on Surface Tissue Heat Transfer—Part I: Anatomical Foundation and Model Conceptualization
,”
ASME J. Biomech. Eng.
0148-0731,
106
, pp.
321
330
.
5.
Crezee
,
J.
, and
Lagendijk
,
J. J. W.
, 1990, “
Experimental Verification of Bioheat Transfer Theories: Measurement of Temperature Profiles around Large Artificial Vessels in Perfused Tissue
,”
Phys. Med. Biol.
0031-9155,
35
(
7
), pp.
905
923
.
6.
He
,
Q.
,
Zhu
,
L.
,
Weinbaum
,
S.
, and
Lemons
,
D. E.
, 2002, “
Experimental Measurements of Temperature Variations Along Paired Vessels From 200 to 1000 μm in Diameter in Rat Hind Leg
,”
J. Biomed. Eng.
0141-5425,
124
, pp.
656
661
.
7.
He
,
Q.
,
Zhu
,
L.
, and
Weinbaum
,
S.
, 2003, “
Effect of Blood Flow on Thermal Equilibration and Venous Rewarming
,”
Ann. Biomed. Eng.
0090-6964,
31
, pp.
659
666
.
8.
Lemons
,
D. E.
,
Chien
,
S.
,
Crawshaw
,
L. I.
,
Weinbaum
,
S.
, and
Jiji
,
L. M.
, 1987, “
The Significance of Vessel Size and Type in Vascular Heat Transfer
,”
Am. J. Physiol.
0002-9513,
253
, pp.
R128
R135
.
9.
Song
,
J.
,
Xu
,
L. X.
,
Lemons
,
D. E.
, and
Weinbaum
,
S.
, 1999, “
Microvascular Thermal Equilibration in Rat Spinotrapezius Muscle
,”
Ann. Biomed. Eng.
0090-6964,
27
(
1
), pp.
56
66
.
10.
Zhu
,
M.
,
Weinbaum
,
S.
, and
Lemons
,
D. E.
, 1988, “
On the Generalization of the Weinbaun-Jiji Equation to Microvessels of Unequal Size: The Relation Between the Near Field and Local Average Tissue Temperature
,”
ASME J. Biomech. Eng.
0148-0731,
110
, pp.
74
81
.
11.
Baish
,
J. W.
, 1994, “
Formulation of a Statistical Model of Heat Transfer in Perfused Tissue
,”
ASME J. Biomech. Eng.
0148-0731,
116
, pp.
521
527
.
12.
Weinbaum
,
S.
, and
Jiji
,
L. M.
, 1985, “
A New Simplified Bioheat Equation for the Effect of Blood Flow on Local Average Tissue Temperature
,”
ASME J. Biomech. Eng.
0148-0731,
107
, pp.
131
139
.
13.
Weinbaum
,
S.
,
Xu
,
L. X.
,
Zhu
,
L.
, and
Ekpene
,
A.
, 1997, “
A New Fundamental Bioheat Equation for Muscle Tissue: Part I—Blood Perfusion Term
,”
ASME J. Biomech. Eng.
0148-0731,
119
, pp.
278
288
.
14.
Zhu
,
L.
,
Xu
,
L. X.
,
He
,
Q.
, and
Weinbaum
,
S.
, 2002, “
A New Fundamental Bioheat Equation for Muscle Tissue, Part II: Temperature of SAV Vessels
,”
ASME J. Biomech. Eng.
0148-0731,
124
, pp.
121
132
.
15.
Nakayama
,
A.
, and
Kuwahara
,
F.
, 2008, “
A General Bioheat Transfer Model Based on the Theory of Porous Media
,”
Int. J. Heat Mass Transfer
0017-9310,
51
, pp.
3190
3199
.
16.
Shrivastava
,
D.
, and
Vaughan
,
J. T.
, 2009, “
A Generic Bioheat Transfer Thermal Model for a Perfused Tissue
,”
ASME J. Biomech. Eng.
0148-0731,
131
, p.
074506
.
17.
Bischof
,
J. C.
, 2000, “
Quantitative Measurement and Prediction of Biophysical Response During Freezing in Tissue
,”
Annu. Rev. Biomed. Eng.
1523-9829,
2
, pp.
257
288
.
18.
Diller
,
K.
, 1992, “
Modeling of Bioheat Transfer Processes at High and Low Temperatures
,”
Bioengineering Heat Transfer: Advances in Heat Transfer
, Vol.
22
,
Y. I.
Cho
, ed.,
Academic Press
,
San Diego, CA
, pp.
157
357
.
19.
Diller
,
K.
, 2006, “
Stress Protein Expression Kinetics
,”
Annu. Rev. Biomed. Eng.
1523-9829,
8
, pp.
403
424
.
20.
Welch
,
A. J.
, and
van Gemert
,
M. J. C.
, 1995,
Optical-Thermal Response of Laser-Irradiated Tissue
,
Plenum
,
New York
.
21.
Bigelow
,
W. G.
,
Callaghan
,
J. C.
, and
Hopps
,
J. A.
, 1950, “
General Hypothermia for Experimental Intracardiac Surgery: The Use of Electrophrenic Respirations, an Artificial Pacemaker for Cardiac Standstill, and Radio-Frequency Rewarming in General Hypothermia
,”
Ann. Surg.
0003-4932,
132
, pp.
531
539
.
22.
Drake
,
C. G.
, and
Jory
,
T. A.
, 1962, “
Hypothermia in the Treatment of Critical Head Injury
,”
Can. Med. Assoc. J.
0008-4409,
87
, pp.
887
891
.
23.
Lazorthes
,
G.
, and
Campan
,
L.
, 1958, “
Hypothermia in the Treatment of Craniocerebral Traumatism
,”
J. Neurosurg.
0022-3085,
15
, pp.
162
167
.
24.
Rosomoff
,
H. L.
, 2004, “
Historical Review of the Development of Brain Hypothermia
,”
Hypothermia for Acute Brain Damage: Pathomechanism and Practical Aspects
,
N.
Hayashi
,
R.
Bullock
,
D. W.
Dietrich
,
T.
Maekawa
, and
A.
Tamura
, eds.,
Springer
,
New York
, pp.
3
16
.
25.
Safar
,
P.
, 2002, “
Cerebral Resuscitation From Temporary Complete Global Brain Ischemia
,”
Cerebral Blood Flow: Mechanisms of Ischemia, Diagnosis and Therapy
,
M. R.
Pinsky
, ed.,
Springer-Verlag
,
Berlin
, pp.
106
136
.
26.
van der Worp
,
H. B.
,
Sena
,
E. S.
,
Donnan
,
G. A.
,
Howells
,
D. W.
, and
Macleod
,
M. R.
, 2007, “
Hypothermia in Animal Models of Acute Ischaemic Stroke: A Systematic Review and Meta-Analysis
,”
Brain
0006-8950,
130
, pp.
3063
3074
.
27.
Dietrich
,
W. D.
,
Prado
,
R.
,
Halley
,
M.
, and
Watson
,
B. D.
, 1993, “
Microvascular and Neuronal Consequences of Common Carotid Artery Thrombosis and Platelet Embolization in Rats
,”
J. Neuropathol. Exp. Neurol.
0022-3069,
52
(
4
), pp.
351
360
.
28.
Welsh
,
F. A.
,
Sims
,
R. E.
, and
Harris
,
V. A.
, 1990, “
Mild Hypothermia Prevents Ischemic Injury in Gerbil Hippocampus
,”
J. Cereb. Blood Flow Metab.
0271-678X,
10
, pp.
557
563
.
29.
Barres
,
A. B.
, and
Raff
,
M. C.
, 1993, “
Proliferation of Oligodendrocyte Precursor Cells Depends on Electrical Activities in Axons
,”
Nature (London)
0028-0836,
361
, pp.
258
260
.
30.
Shi
,
J.
,
Marinovich
,
A.
, and
Barres
,
B. A.
, 1998, “
Purification and Characterization of Adult Oligodendrocyte Precursor Cells From the Rat Optic Nerve
,”
J. Neurosci.
0270-6474,
18
, pp.
4627
4636
.
31.
White
,
L. J.
, and
Dressendorfer
,
R. H.
, 2004, “
Exercise and Multiple Sclerosis
,”
Sports Med.
0112-1642,
34
(
15
), pp.
1077
1100
.
32.
Grahn
,
D. A.
,
Brock-Utne
,
J. G.
,
Watenpaugh
,
D. E.
, and
Heller
,
H. C.
, 1998, “
Recovery From Mild Hypothermia Can Be Accelerated by Mechanically Distending Blood Vessels in the Hand
,”
J. Appl. Physiol.
0021-8987,
85
, pp.
1643
1648
.
33.
Grahn
,
D. A.
,
Cao
,
V. H.
, and
Heller
,
H. C.
, 2005, “
Heat Extraction Through the Palm of One Hand Improves Aerobic Exercise Endurance in a Hot Environment
,”
J. Appl. Physiol.
0021-8987,
99
(
3
), pp.
972
978
.
34.
Grahn
,
D. A.
,
Dillon
,
J. L.
, and
Heller
,
H. C.
, 2009, “
Heat Loss Through the Glabrous Skin Surfaces of Heavily Insulated, Heat-Stressed Individuals
,”
ASME J. Biomech. Eng.
0148-0731,
131
, p.
071005
.
35.
Kammersgaard
,
L. P.
,
Rasmussen
,
B. H.
,
Jorgensen
,
H. S.
,
Reith
,
J.
,
Weber
,
U.
, and
Olsen
,
T. S.
, 2000, “
Feasibility and Safety of Inducing Modest Hypothermia in Awake Patients With Acute Stroke Through Surface Cooling: A Case-Control Study
,”
Stroke
0039-2499,
31
, pp.
2251
2256
.
36.
Olsen
,
T. S.
,
Weber
,
U. J.
, and
Kammersgaard
,
L. P.
, 2003, “
Therapeutic Hypothermia for Acute Stroke
,”
Lancet Neurol.
,
2
, pp.
410
416
.
37.
Schwab
,
S.
,
Spranger
,
M.
,
Aschoff
,
A.
,
Steiner
,
T.
, and
Hacke
,
W.
, 1997, “
Brain Temperature Monitoring and Modulation in Patients With Severe MCA Infarction
,”
Neurology
0028-3878,
48
, pp.
762
767
.
38.
Holzer
,
M.
,
Müllner
,
M.
,
Sterz
,
F.
,
Robak
,
O.
,
Kliegel
,
A.
,
Losert
,
H.
,
Sodeck
,
G.
,
Uray
,
T.
,
Zeiner
,
A.
, and
Laggner
,
A. N.
, 2006, “
Efficacy and Safety of Endovascular Cooling After Cardiac Arrest: Cohort Study and Bayesian Approach
,”
Stroke
0039-2499,
37
, pp.
1792
1797
.
39.
Keller
,
E.
,
Imhof
,
H. -G.
,
Gasser
,
S.
,
Terzic
,
A.
, and
Yonekawa
,
Y.
, 2003, “
Endovascular Cooling With Heat Exchange Catheters: A New Method to Induce and Maintain Hypothermia
,”
Intensive Care Med.
0342-4642,
29
, pp.
939
943
.
40.
Lyden
,
P. D.
,
Allgren
,
R. L.
,
Ng
,
K.
,
Akins
,
P.
,
Meyer
,
B.
,
Al-Sanani
,
F.
,
Lutsep
,
H.
,
Dobak
,
J.
,
Matsubara
,
B. S.
, and
Zivin
,
J.
, 2005, “
Intravascular Cooling in the Treatment of Stroke (ICTuS): Early Clinical Experience
,”
J. Stroke Cerebrovasc. Dis.
,
14
(
3
), pp.
107
114
.
41.
Bakken
,
H. E.
,
Kawasaki
,
H.
,
Oya
,
H.
,
Greenlee
,
J. D. W.
, and
Howard
,
M. A.
, 2003, “
A Device for Cooling Localized Regions of Human Cerebral Cortex
,”
J. Neurosurg.
0022-3085,
99
, pp.
604
608
.
42.
Diao
,
C.
,
Zhu
,
L.
, and
Wang
,
H.
, 2003, “
Cooling and Rewarming for Brain Ischemia or Injury: Theoretical Analysis
,”
Ann. Biomed. Eng.
0090-6964,
31
, pp.
346
353
.
43.
Ku
,
Y.
,
Montgomery
,
L. D.
, and
Webbon
,
B.
, 1996, “
Hemodynamic and Thermal Responses to Head and Neck Cooling in Men and Woman
,”
Am. J. Phys. Med. Rehabil.
0894-9115,
75
, pp.
443
450
.
44.
Laptook
,
A. R.
,
Shalak
,
L.
, and
Corbett
,
R. J. T.
, 2001, “
Differences in Brain Temperature and Cerebral Blood Flow During Selective Head Versus Whole-Body Cooling
,”
Pediatrics
0031-4005,
108
(
5
), pp.
1103
1110
.
45.
Noguchi
,
Y.
,
Nishio
,
S.
,
Kawuchi
,
M.
,
Asari
,
S.
, and
Ohmoto
,
T.
, 2002, “
A New Method of Inducing Selective Brain Hypothermia With Saline Perfusion Into the Subdural Space: Effects on Transient Cerebral Ischemia in Cats
,”
Acta Med. Okayama
0386-300X,
56
, pp.
279
286
.
46.
Zhu
,
L.
, and
Rosengart
,
A. J.
, 2008, “
Cooling Penetration Into Normal and Injured Brain via Intraparenchymal Brain Cooling Probe: Theoretical Analyses
,”
Heat Transfer Eng.
0145-7632,
29
(
3
), pp.
284
294
.
47.
Ding
,
Y.
,
Li
,
J.
,
Luan
,
X.
,
Lai
,
Q.
,
McAllister
,
J. P.
,
Phillis
,
J. W.
,
Clark
,
J. C.
,
Guthikonda
,
M.
, and
Diaz
,
F. G.
, 2004, “
Local Saline Infusion Into Ischemic Territory Induces Regional Brain Cooling and Neuroprotection in Rats With Transient Middle Cerebral Artery Occlusion
,”
Neurosurgery
0148-396X,
54
, pp.
956
965
.
48.
Neimark
,
M. A.
,
Konstas
,
A.
,
Choi
,
J. H.
,
Laine
,
A. F.
, and
Pile-Spellman
,
J.
, 2008, “
Brain Cooling Maintenance With Cooling Cap Following Induction With Intracarotid Cold Saline Infusion: A Quantitative Model
,”
J. Theor. Biol.
0022-5193,
253
(
2
), pp.
333
344
.
49.
Wang
,
Y.
, and
Zhu
,
L.
, 2007, “
Selective Brain Hypothermia Induced by an Interstitial Cooling Device in Human Neck: Theoretical Analyses
,”
Eur. J. Appl. Physiol.
0301-5548,
101
, pp.
31
40
.
50.
Wang
,
Y.
,
Zhu
,
L.
, and
Rosengart
,
A. J.
, 2008, “
Targeted Brain Hypothermia Induced by an Interstitial Cooling Device in the Rat Neck: Experimental Study and Model Validation
,”
Int. J. Heat Mass Transfer
0017-9310,
51
, pp.
5662
5670
.
51.
Wei
,
G.
,
Hartings
,
J. A.
,
Yang
,
X.
,
Tortella
,
F. C.
, and
Lu
,
X. -C. M.
, 2008, “
Extraluminal Cooling of Bilateral Common Carotid Arteries as a Method to Achieve Selective Brain Cooling for Neuroprotection
,”
J. Neurotrauma
0897-7151,
25
, pp.
549
559
.
52.
Attaluri
,
A.
,
Huang
,
Z.
, and
Zhu
,
L.
, 2010, “
Evaluation of an Interstitial Cooling Device for Carotid Arterial Cooling Using Tissue Equivalent Gel Phantom
,”
J. Thermodynamic Sciences and Engineering Applications
,
2
, p.
011007
.
53.
Bommadevara
,
M.
, and
Zhu
,
L.
, 2002, “
Temperature Difference Between the Body Core and Arterial Blood Supplied to the Brain During Hyperthermia or Hypothermia in Humans
,”
Biomech. Model. Mechanobiol.
1617-7959,
1
(
2
), pp.
137
149
.
54.
Eginton
,
M. L.
, 2007, “
Evaluation of the Effectiveness of a Commercial Cooling Collar in Reducing Body Temperature During Heat Stress: Theoretical Modeling of Body Temperature Distribution
,” MS thesis, University of Maryland, Baltimore, MD, pp.
1
55
.
55.
Georgiadis
,
D.
,
Schwarz
,
S.
,
Kollmar
,
R.
, and
Schwab
,
S.
, 2001, “
Endovascular Cooling for Moderate Hypothermia in Patients With Acute Stroke: First Results of a Novel Approach
,”
Stroke
0039-2499,
32
, pp.
2550
2553
.
56.
Dennis
,
B. H.
,
Eberhart
,
R. C.
,
Dulikravich
,
G. S.
, and
Radons
,
S. W.
, 2003, “
Finite Element Simulation of Cooling of Realistic 3-D Human Head and Neck
,”
ASME J. Biomech. Eng.
0148-0731,
125
, pp.
832
840
.
57.
Janssen
,
F. E. M.
,
van Leeuwen
,
G. M. J.
, and
van Steenhoven
,
A. A.
, 2005, “
Modeling of Temperature and Perfusion During Scalp Cooling
,”
Phys. Med. Biol.
0031-9155,
50
(
17
), pp.
4065
4073
.
58.
Ley
,
O.
, and
Bayazitoglu
,
Y.
, 2003, “
Effect of Physiology on the Temperature Distribution of a Layered Head With External Convection
,”
Int. J. Heat Mass Transfer
0017-9310,
46
(
17
), pp.
3233
3241
.
59.
van Leeuwen
,
G. M. J.
,
Hand
,
J. W.
,
Lagendijk
,
J. W.
,
Azzopardi
,
D. V.
, and
Edwards
,
A. D.
, 2000, “
Numerical Modeling of Temperature Distributions Within the Neonatal Head
,”
Pediatr. Res.
0031-3998,
48
, pp.
351
356
.
60.
Zhu
,
L.
,
Schappeler
,
T.
,
Cordero-Tumangday
,
C.
, and
Rosengart
,
A. J.
, 2009, “
Thermal Interactions Between Blood and Tissue: Development of a Theoretical Approach in Predicting Body Temperature During Blood Cooling/Rewarming
,”
Advances in Numerical Heat Transfer
, Vol.
3
,
W. J.
Minkowycz
and
E. M.
Sparrow
, eds., CRC,
Boca Raton, FL
, pp.
197
219
.
61.
Diao
,
C.
, and
Zhu
,
L.
, 2006, “
Temperature Distribution and Blood Flow Response in Rat Brain During Selective Brain Cooling
,”
Med. Phys.
0094-2405,
33
(
7
), pp.
2565
2573
.
62.
Bering
,
E.
, 1961, “
Effect of Body Temperature Change on Cerebral Oxygen Consumption of the Intact Monkey
,”
Am. J. Physiol.
0002-9513,
200
, pp.
417
419
.
63.
Scheinman
,
M. M.
,
Morady
,
F.
,
Hess
,
D. S.
, and
Gonzalez
,
R.
, 1982, “
Catheter-Induced Ablation of the Atrioventricular Junction to Control Refractory Supraventricular Arrhythmias
,”
JAMA, J. Am. Med. Assoc.
0098-7484,
248
, pp.
851
855
.
64.
Nath
,
S.
, and
Haines
,
D. E.
, 1995, “
Biophysics and Pathology of Catheter Energy Delivery System
,”
Prog. Cardiovasc. Dis.
0033-0620,
37
(
4
), pp.
185
204
.
65.
Patel
,
N. K.
,
Heywood
,
P.
,
O’Sullivan
,
K.
,
McCarter
,
R.
,
Love
,
S.
, and
Gill
,
S. S.
, 2003, “
Unilateral Subthalamotomy in the Treatment of Parkinson’s Disease
,”
Brain
0006-8950,
126
, pp.
1136
1145
.
66.
Wonnell
,
T. L.
,
Stauffer
,
P. R.
, and
Langberg
,
J. J.
, 1992, “
Evaluation of Microwave and Radio Frequency Catheter Ablation in a Myocardium-Equivalent Phantom Model
,”
IEEE Trans. Biomed. Eng.
0018-9294,
39
, pp.
1086
1095
.
67.
Zhu
,
L.
, and
Xu
,
L. X.
, 1999, “
Evaluation of the Effectiveness of Transurethral Radio Frequency Hyperthermia in the Canine Prostate: Temperature Distribution Analysis
,”
ASME J. Biomech. Eng.
0148-0731,
121
, pp.
584
590
.
68.
Zhu
,
L.
,
Xu
,
L. X.
, and
Chencinski
,
N.
, 1998, “
Quantification of the 3-D Electromagnetic Power Absorption Rate in Tissue During Transurethral Prostatic Microwave Thermotherapy Using Heat Transfer Model
,”
IEEE Trans. Biomed. Eng.
0018-9294,
45
(
9
), pp.
1163
1172
.
69.
Flower
,
R. W.
, 2002, “
Optimizing Treatment of Choroidal Neovascularization Feeder Vessels Associated With Age-Related Macular Degeneration
,”
Am. J. Ophthalmol.
0002-9394,
134
, pp.
228
239
.
70.
Zhu
,
L.
,
Banerjee
,
R. K.
,
Salloum
,
M.
,
Bachmann
,
A. J.
, and
Flower
,
R. W.
, 2008, “
Temperature Distribution During ICG Dye-Enhanced Laser Photocoagulation of Feeder Vessels in Treatment of AMD-Related Choroidal Neovascularization (CNV)
,”
ASME J. Biomech. Eng.
0148-0731,
130
(
3
), p.
031010
.
71.
Jia
,
W.
,
Aguilar
,
G.
,
Verkruysse
,
W.
,
Franco
,
W.
, and
Nelson
,
J. S.
, 2006, “
Improvement of Port Wine Stain Laser Therapy by Skin Preheating Prior to Cryogen Spray Cooling: A Numerical Simulation
,”
Lasers Surg. Med.
0196-8092,
38
, pp.
155
162
.
72.
Huikeshoven
,
M.
,
Koster
,
P. H.
,
de Borgie
,
C. A.
,
Beek
,
J. F.
,
van Gemert
,
M. J.
, and
van der Horst
,
C. M.
, 2007, “
Redarkening of Port-Wine Stains 10 Years After Pulsed-Dye-Laser Treatment
,”
N. Engl. J. Med.
0028-4793,
356
(
12
), pp.
1235
1240
.
73.
Jasim
,
Z. F.
, and
Handley
,
J. M.
, 2007, “
Treatment of Pulsed Dye Laser Resistant Port Wine Stain Birthmarks
,”
J. Am. Acad. Dermatol.
0190-9622,
57
(
4
), pp.
677
682
.
74.
Izikson
,
L.
,
Nelson
,
J. S.
, and
Anderson
,
R. R.
, 2009, “
Treatment of Hypertrophic and Resistant Port Wine Stains With a 755 nm Laser: A Case Series of 20 Patients
,”
Lasers Surg. Med.
0196-8092,
41
(
6
), pp.
427
432
.
75.
Zhu
,
L.
,
Tolba
,
M.
,
Arola
,
D.
,
Salloum
,
M.
, and
Meza
,
F.
, 2009, “
Evaluation of Effectiveness of Er,Cr:YSGG Laser for Root Canal Disinfection: Theoretical Simulation of Temperature Elevations in Root Dentin
,”
ASME J. Biomech. Eng.
0148-0731,
131
(
7
), p.
071004
.
76.
Barberia
,
E.
,
Maroto
,
M.
,
Arenas
,
M.
, and
Silva
,
C. C.
, 2008, “
A Clinical Study of Caries Diagnosis With a Laser Fluorescence System
,”
J. Am. Dent. Assoc.
0002-8177,
139
, pp.
572
579
.
77.
Chu
,
C. H.
,
Lo
,
E. C. M.
, and
You
,
D. S. H.
, 2010, “
Clinical Diagnosis of Fissure Caries With Conventional and Laser-Induced Fluorescence Techniques
,”
Lasers Med. Sci.
0268-8921,
25
, pp.
355
362
.
78.
Du
,
L.
,
Zhou
,
J.
,
Wang
,
X.
,
Sheng
,
L.
,
Wang
,
G.
,
Xie
,
X.
,
Xu
,
G.
,
Zhao
,
L.
,
Liao
,
Y.
, and
Tang
,
J.
, 2009, “
Effect of Local Hyperthermia Induced by Nanometer Magnetic Fluid on the Rabbit VX2 Liver Tumor Model
,”
Prog. Nat. Sci.
1002-0071,
19
(
12
), pp.
1705
1712
.
79.
Gazeau
,
F.
,
Lévy
,
M.
, and
Wilhelm
,
C.
, 2008, “
Optimizing Magnetic Nanoparticle Design for Nanothermotherapy
,”
Nanomedicine
1743-5889,
3
(
6
), pp.
831
844
.
80.
Jordan
,
A.
,
Scholz
,
R.
,
Wust
,
P.
,
Fahling
,
H.
, and
Felix
,
R.
, 1999, “
Magnetic Fluid Hyperthermia (MFH): Cancer Treatment With AC Magnetic Field Induced Excitation of Biocompatible Superparamagnetic Nanoparticles
,”
J. Magn. Magn. Mater.
0304-8853,
201
, pp.
413
419
.
81.
Salloum
,
M.
,
Ma
,
R.
,
Weeks
,
D.
, and
Zhu
,
L.
, 2008, “
Controlling Nanoparticle Delivery in Magnetic Nanoparticle Hyperthermia for Cancer Treatment: Experimental Study in Agarose Gel
,”
Int. J. Hyperthermia
0265-6736,
24
(
4
), pp.
337
345
.
82.
Salloum
,
M.
,
Ma
,
R.
, and
Zhu
,
L.
, 2008, “
An In-Vivo Experimental Study of Temperature Elevations in Animal Tissue During Magnetic Nanoparticle Hyperthermia
,”
Int. J. Hyperthermia
0265-6736,
24
(
7
), pp.
589
601
.
83.
Salloum
,
M.
,
Ma
,
R.
, and
Zhu
,
L.
, 2009, “
Enhancement in Treatment Planning for Magnetic Nanoparticle Hyperthermia: Optimization of the Heat Absorption Pattern
,”
Int. J. Hyperthermia
0265-6736,
25
(
4
), pp.
309
321
.
84.
Skrabalak
,
S. E.
,
Chen
,
J.
,
Au
,
L.
,
Lu
,
X.
,
Li
,
X.
, and
Xia
,
Y.
, 2007, “
Gold Nanocages for Biomedical Applications
,”
Adv. Mater.
0935-9648,
19
, pp.
3177
3184
.
85.
Gilchrist
,
R. K.
,
Medal
,
R.
,
Shorey
,
W. D.
,
Hanselman
,
R. C.
,
Parrott
,
J. C.
, and
Taylor
,
C. B.
, 1957, “
Selective Inductive Heating of Lymph Nodes
,”
Ann. Surg.
0003-4932,
146
, pp.
596
606
.
86.
Hilger
,
I.
,
Hergt
,
R.
, and
Kaiser
,
W. A.
, 2005, “
Towards Breast Cancer Treatment by Magnetic Heating
,”
J. Magn. Magn. Mater.
0304-8853,
293
, pp.
314
319
.
87.
Moroz
,
P.
,
Jones
,
S. K.
, and
Gray
,
B. N.
, 2002, “
Magnetically Mediated Hyperthermia: Current Status and Future Directions
,”
Int. J. Hyperthermia
0265-6736,
18
(
4
), pp.
267
284
.
88.
Hergt
,
R.
, and
Andra
,
W.
, 1998, “
Physical Limits of Hyperthermia Using Magnetite Fine Particles
,”
IEEE Trans. Magn.
0018-9464,
34
(
5
), pp.
3745
3754
.
89.
Rosensweig
,
R. E.
, 2002, “
Heating Magnetic Fluid With Alternating Magnetic Field
,”
J. Magn. Magn. Mater.
0304-8853,
252
, pp.
370
374
.
90.
Hergt
,
R.
,
Hiergeist
,
R.
,
Zeisberger
,
M.
,
Glockl
,
G.
,
Weitschies
,
W.
,
Ramirez
,
L. P.
,
Hilger
,
I.
, and
Kaiser
,
W. A.
, 2004, “
Enhancement of AC-Losses of Magnetic Nanoparticles for Heating Applications
,”
J. Magn. Magn. Mater.
0304-8853,
280
, pp.
358
368
.
91.
Hilger
,
I.
,
Andra
,
W.
,
Hergt
,
R.
,
Hiergeist
,
R.
,
Schubert
,
H.
, and
Kaiser
,
W. A.
, 2001, “
Electromagnetic Heating of Breast Tumors in Interventional Radiology: In Vitro and in Vivo Studies in Human Cadavers and Mice
,”
Radiology
0033-8419,
218
(
2
), pp.
570
575
.
92.
Johannsen
,
M.
,
Jordan
,
A.
,
Scholz
,
R.
,
Koch
,
M.
,
Lein
,
M.
,
Deger
,
S.
,
Roigas
,
J.
,
Jung
,
K.
, and
Loening
,
S.
, 2004, “
Evaluation of Magnetic Fluid Hyperthermia in a Standard Rat Model of Prostate Cancer
,”
J. Endourol
0892-7790,
18
(
5
), pp.
495
500
.
93.
Johannsen
,
M.
,
Thiesen
,
B.
,
Jordan
,
A.
,
Taymoorian
,
K.
,
Gneveckow
,
U.
,
Waldofner
,
N.
,
Scholz
,
R.
,
Koch
,
M.
,
Lein
,
M.
, and
Jung
,
K.
, 2005, “
Magnetic Fluid Hyperthermia (MFH) Reduces Prostate Cancer Growth in the Orthotopic Dunning R3327 Rat Model
,”
Prostate
0270-4137,
64
, pp.
283
292
.
94.
Jordan
,
A.
,
Scholz
,
R.
,
Maier-Hauff
,
K.
,
van Landeghem
,
F. K.
,
Waldoefner
,
N.
,
Teichgraeber
,
U.
,
Pinkernelle
,
J.
,
Bruhn
,
H.
,
Neumann
,
F.
,
Thiesen
,
B.
,
von Deimling
,
A.
, and
Felix
,
R.
, 2006, “
The Effect of Thermotherapy Using Magnetic Nanoparticles on Rat Malignant Glioma
,”
J. Neuro-Oncol.
0167-594X,
78
, pp.
7
14
.
95.
Fortin
,
J. P.
,
Gazeau
,
F.
, and
Wilhelm
,
C.
, 2008, “
Intracellular Heating of Living Cells Through Néel Relaxation of Magnetic Nanoparticles
,”
Eur. Biophys. J.
0175-7571,
37
(
2
), pp.
223
228
.
96.
Averitt
,
R. D.
,
Sarkar
,
D.
, and
Halas
,
N. J.
, 1997, “
Plasmon Resonance Shifts of Au-Coated Au2S Nanoshells: Insight Into Multicomponent Nanoparticle Growth
,”
Phys. Rev. Lett.
0031-9007,
78
, pp.
4217
4220
.
97.
Lal
,
S.
,
Clare
,
S. E.
, and
Halas
,
N. J.
, 2008, “
Nanoshell-Enabled Photothermal Cancer Therapy: Impending Clinical Impact
,”
Acc. Chem. Res.
0001-4842,
41
(
12
), pp.
1842
1851
.
98.
Bernardi
,
R. J.
,
Lowery
,
A. R.
,
Thompson
,
P. A.
,
Blaney
,
S. M.
, and
West
,
J. L.
, 2008, “
Immunonanoshells for Targeted Photothermal Ablation in Medulloblastoma and Glioma: An In Vitro Evaluation Using Human Cell Lines
,”
J. Neuro-Oncol.
0167-594X,
86
, pp.
165
172
.
99.
El-Sayed
,
I. H.
,
Huang
,
X.
, and
El-Sayed
,
M. A.
, 2006, “
Selective Laser Photo-Thermal Therapy of Epithelial Carcinoma Using Anti-EGFR Antibody Conjugated Gold Nanoparticles
,”
Cancer Lett.
0304-3835,
239
, pp.
129
135
.
100.
Gobin
,
A. M.
,
Moon
,
J. J.
, and
West
,
J. L.
, 2008, “
EphrinAl-Targeted Nanoshells for Photothermal Ablation of Prostate Cancer Cells
,”
Int. J. Nanomedicine
,
3
(
3
), pp.
351
358
.
101.
Melancon
,
M. P.
,
Lu
,
W.
,
Yang
,
Z.
,
Zhang
,
R.
,
Cheng
,
Z.
,
Elliot
,
A. M.
,
Stafford
,
J.
,
Olson
,
T.
,
Zhang
,
J. Z.
, and
Li
,
C.
, 2008, “
In Vitro and In Vivo Targeting of Hollow Gold Nanoshells Directed at Epidermal Growth Factor Receptor for Photothermal Ablation Therapy
,”
Mol. Cancer Ther.
,
7
(
6
), pp.
1730
1739
.
102.
Norman
,
R. S.
,
Stone
,
J. W.
,
Gole
,
A.
,
Murphy
,
C. J.
, and
Sabo-Attwood
,
T. L.
, 2008, “
Targeted Photothermal Lysis of the Pathogenic Bacteria, Pseudomonas Aeruginosaa, With Gold Nanorods
,”
Nano Lett.
1530-6984,
8
(
1
), pp.
302
306
.
103.
Whitney
,
J.
,
Dorn
,
H.
,
Rylander
,
C.
,
Campbell
,
T.
,
Geohegan
,
D.
, and
Rylander
,
M. N.
, 2010, “
Spatiotemporal Temperature and Cell Viability Measurement Following Laser Therapy in Combination With Carbon Nanohorns
,”
Proceedings of the Summer Bioengineering Engineering Conference
, Paper No. SBC2010-19619.
104.
O’Neal
,
D. P.
,
Hirsch
,
L. R.
,
Halas
,
N. J.
,
Payne
,
J. D.
, and
West
,
J. L.
, 2004, “
Photo-Thermal Tumor Ablation in Mice Using Near Infrared-Absorbing Nanoparticles
,”
Cancer Lett.
0304-3835,
209
, pp.
171
176
.
105.
Stern
,
J. M.
,
Stanfield
,
J.
,
Kabbani
,
W.
,
Hsieh
,
J. -T.
, and
Cadeddu
,
J. A.
, 2008, “
Selective Prostate Cancer Thermal Ablation With Laser Activated Cold Nanoshells
,”
J. Urol. (Baltimore)
0022-5347,
179
, pp.
748
753
.
106.
Hirsch
,
L. R.
,
Stafford
,
R. J.
,
Bankson
,
J. A.
,
Sershen
,
S. R.
,
Rivera
,
B.
,
Price
,
R. E.
,
Hazle
,
J. D.
,
Halas
,
N. J.
, and
West
,
J. L.
, 2003, “
Nanoshell-Mediated Near-Infrared Thermal Therapy of Tumors Under Magnetic Resonance Guidance
,”
Proc. Natl. Acad. Sci. U.S.A.
0027-8424,
100
(
23
), pp.
13549
13554
.
107.
Qin
,
Z.
, and
Bischof
,
J. C.
, 2010, “
One Dimensional Experimental Setup to Study the Heating of Nanoparticle Laden Systems
,”
Proceedings of the Summer Bioengineering Engineering Conference
, Paper No. SBC2010-19676.
108.
Elliott
,
A. M.
,
Stafford
,
R. J.
,
Schwartz
,
J.
,
Wang
,
J.
,
Shetty
,
A. M.
,
Bourgoyne
,
C.
,
O’Neal
,
P.
, and
Hazle
,
J. D.
, 2007, “
Laser-Induced Thermal Response and Characterization of Nanoparticles for Cancer Treatment Using Magnetic Resonance Thermal Imaging
,”
Med. Phys.
0094-2405,
34
, pp.
3102
3108
.
109.
Xie
,
H.
,
Gill-Sharp
,
K. L.
, and
O’Neal
,
D. P.
, 2007, “
Quantitative Estimation of Gold Nanoshell Concentrations in Whole Blood Using Dynamic Light Scattering
,”
Nanomedicine
1743-5889,
3
, pp.
89
94
.
110.
Choi
,
M. R.
,
Stanton-Maxey
,
K. J.
,
Stanley
,
J. K.
,
Levin
,
C. S.
,
Bardhan
,
R.
,
Akin
,
D.
,
Badve
,
S.
,
Sturgis
,
J.
,
Robinson
,
J. P.
,
Bashir
,
R.
,
Halas
,
N. J.
, and
Clare
,
S. E.
, 2007, “
A Cellular Trojan Horse for Delivery of Therapeutic Nanoparticles Into Tumors
,”
Nano Lett.
1530-6984,
7
, pp.
3759
3765
.
111.
Dreher
,
M. R.
,
Liu
,
W.
,
Michelich
,
C. R.
,
Dewhirst
,
M. W.
,
Yuan
,
F.
, and
Chilkoti
,
A.
, 2006, “
Tumor Vascular Permeability, Accumulation, and Penetration of Macromolecular Drug Carriers
,”
Int. J. Radiat. Oncol., Biol., Phys.
0360-3016,
32
, pp.
1419
1423
.
112.
Berk
,
D. A.
,
Yuan
,
F.
,
Leunig
,
M.
, and
Jain
,
R. K.
, 1993, “
Fluorescence Photobleaching With Spatial Fourier Analysis: Measurement of Diffusion in Light-Scattering Media
,”
Biophys. J.
0006-3495,
65
, pp.
2428
2436
.
113.
Pluen
,
A.
,
Boucher
,
Y.
,
Ramanujan
,
S.
,
McKee
,
T. D.
,
Gohongi
,
R.
,
DiTomaso
,
E.
,
Brown
,
E. B.
,
Izumi
,
Y.
,
Campbell
,
R. B.
,
Berk
,
D. A.
, and
Jain
,
R. K.
, 2001, “
Role of Tumor-Host Interactions in Interstitial Diffusion of Macromolecules: Cranial vs. Subcutaneous Tumors
,”
Proc. Natl. Acad. Sci. U.S.A.
0027-8424,
98
, pp.
4628
4633
.
114.
Liu
,
P.
,
Zhang
,
A.
,
Xu
,
Y.
, and
Xu
,
L. X.
, 2005, “
Study of Non-Uniform Nanoparticle Liposome Extravasation in Tumor
,”
Int. J. Hyperthermia
0265-6736,
21
, pp.
259
270
.
115.
Attaluri
,
A.
,
Ma
,
R.
, and
Zhu
,
L.
, 2011, “
Using MicroCT Imaging Technique to Quantify Heat Generation Distribution Induced by Magnetic Nanoparticles for Cancer Treatment
,”
ASME J. Heat Transfer
0022-1481,
133
, p.
011003
.
116.
von Maltzahn
,
G.
,
Park
,
J. -H.
,
Agrawal
,
A.
,
Bandaru
,
N. K.
,
Das
,
S. K.
,
Sailor
,
M. J.
, and
Bhatia
,
S. N.
, 2009, “
Computationally Guided Photothermal Tumor Therapy Using Long-Circulating Gold Nanorod Antennas
,”
Cancer Res.
0008-5472,
69
, pp.
3892
3900
.
117.
Attaluri
,
A.
,
Ma
,
R.
,
Qiu
,
Y.
,
Li
,
W.
, and
Zhu
,
L.
, “
Nanoparticle Distribution and Temperature Elevations in Prostatic Tumors in Mice During Magnetic Nanoparticle Hyperthermia
,”
Int. J. Hyperthermia
0265-6736, submitted.
118.
Prabhu
,
S. S.
,
Broaddus
,
W. C.
,
Gillies
,
G. T.
,
Loudon
,
W. G.
,
Chen
,
Z. J.
, and
Smith
,
B.
, 1998, “
Distribution of Macromolecular Dyes in Brain Using Positive Pressure Infusion: A Model for Direct Controlled Delivery of Therapeutic Agents
,”
Surg. Neurol.
0090-3019,
50
, pp.
367
375
.
119.
Elimelech
,
M.
, and
O’Melia
,
C. R.
, 1990, “
Kinetics of Deposition of Colloidal Particles in Porous Media
,”
Environ. Sci. Technol.
0013-936X,
24
, pp.
1528
1536
.
120.
Khaled
,
A. R. A.
, and
Vafai
,
K.
, 2003, “
The Role of Porous Media in Modeling Flow and Heat Transfer in Biological Tissues
,”
Int. J. Heat Mass Transfer
0017-9310,
46
, pp.
4989
5003
.
121.
Kim
,
A. S.
, and
Yuan
,
R.
, 2005, “
Hydrodynamics of an Ideal Aggregate With Quadratically Increasing Permeability
,”
J. Colloid Interface Sci.
0021-9797,
285
, pp.
627
633
.
122.
Ramanujan
,
S.
,
Pluen
,
A.
,
McKee
,
T. D.
,
Brown
,
E. B.
,
Boucher
,
Y.
, and
Jain
,
R. K.
, 2002, “
Diffusion and Convection in Collagen Gels: Implications for Transport in the Tumor Interstitium
,”
Biophys. J.
0006-3495,
83
, pp.
1650
1660
.
123.
Bobo
,
R. H.
,
Laske
,
D. W.
,
Akbasak
,
A.
,
Morrison
,
P. F.
,
Dedrick
,
R. L.
, and
Oldfield
,
E. H.
, 1994, “
Convection-Enhanced Delivery of Macromolecules in the Brain
,”
Proc. Natl. Acad. Sci. U.S.A.
0027-8424,
91
(
6
), pp.
2076
2080
.
124.
Dillehay
,
L. E.
, 1997, “
Decreasing Resistance During Fast Infusion of a Subcutaneous Tumor
,”
Anticancer Res.
0250-7005,
17
(
1A
), pp.
461
466
.
125.
Jain
,
R. K.
, 1997, “
Delivery of Molecular and Cellular Medicine to Solid Tumors
,”
Adv. Drug Delivery Rev.
0169-409X,
26
, pp.
71
90
.
126.
McGuire
,
S.
, and
Yuan
,
F.
, 2001, “
Quantitative Analysis of Intratumoral Infusion of Color Molecules
,”
Am. J. Physiol.
0002-9513,
281
(
2
), pp.
H715
H721
.
127.
Wang
,
Y.
,
Wang
,
H.
,
Li
,
C. Y.
, and
Yuan
,
F.
, 2006, “
Effects of Rate, Volume, and Dose of Intratumoral Infusion on Virus Dissemination in Local Gene Delivery
,”
Mol. Cancer Ther.
,
5
(
2
), pp.
362
366
.
128.
Su
,
D.
,
Ma
,
R.
,
Salloum
,
M.
, and
Zhu
,
L.
, 2010, “
Multi-Scale Study of Nanoparticle Transport and Deposition in Tissues During an Injection Process
,”
Med. Biol. Eng. Comput.
0140-0118,
48
, pp.
853
863
.
You do not currently have access to this content.