Graphical Abstract Figure
Graphical Abstract Figure
Close modal

Abstract

This study aims to determine the effect of the aspect ratio of the cross section of a rectangular twisted tape on the laminar heat transfer characteristics inside an isothermally heated circular pipe. Detailed three-dimensional simulations reveal facts that would be difficult to estimate otherwise. A novel study of the evolution of the axial and secondary velocity fields as well as the temperature field within the pipe is presented to understand the flow physics behind the heat transfer enhancement. The three-dimensional simulation results are used to accurately calculate the portion of the total energy of the flow that is converted to secondary kinetic energy. In addition to the Nusselt number and friction factor, three parameters, viz. relative increase in heat transfer coefficient, relative increase in pressure drop, and thermo-hydraulic performance factor are used to quantify the effect of the twisted tape. While both the heat transfer and the pressure drop increase with a decrease in the twist ratio (TR), the thermo-hydraulic performance factor (THPF) is found to become almost independent of TR as the aspect ratio (AR) decreases to low values. It is inferred from the present results that although a twisted tape with a small pitch and large aspect ratio enhances heat transfer performance, a lower aspect ratio may provide a better option from a power requirement perspective. Hence, this work shows, for the first time, that a square-like cross section of the twisted tape could be advantageous.

References

1.
Żyła
,
G.
,
Fal
,
J.
, and
Estellé
,
P.
,
2017
, “
The Influence of Ash Content on Thermophysical Properties of Ethylene Glycol Based Graphite/Diamonds Mixture Nanofluids
,”
Diam. Relat. Mater.
,
74
, pp.
81
89
.
2.
Murshed
,
S. M. S.
, and
Estellé
,
P.
,
2017
, “
A State of the Art Review on Viscosity of Nanofluids
,”
Renew. Sustainable Energy Rev.
,
76
, pp.
1134
1152
.
3.
Keklikcioglu
,
O.
,
Dagdevir
,
T.
, and
Ozceyhan
,
V.
,
2020
, “
Second Law Analysis of a Mixture of Ethylene Glycol/Water Flow in Modified Heat Exchanger Tube by Passive Heat Transfer Enhancement Technique
,”
J. Therm. Anal. Calorim.
,
140
(
3
), pp.
1307
1320
.
4.
Pradhan
,
K.
, and
Guha
,
A.
,
2017
, “
CFD Solutions for Magnetohydrodynamic Natural Convection Over Horizontal and Vertical Surfaces
,”
J. Mol. Liq.
,
236
, pp.
465
476
.
5.
Yadav
,
R. J.
,
Mahajani
,
T.
,
Kore
,
S. S.
,
Gadhe
,
P. M.
, and
Kamble
,
D. A.
,
2023
, “
Investigation of Heat Transfer Characteristics Using Fe3O4 Nanofluid Along With TT Inserts in Tube With Uniform Electromagnetic Field
,”
Appl. Nanosci.
,
13
(
1
), pp.
763
785
.
6.
Sahin
,
B.
,
2007
, “
A Taguchi Approach for Determination of Optimum Design Parameters for a Heat Exchanger Having Circular-Cross Sectional Pin Fins
,”
Heat Mass Transf.
,
43
(
5
), pp.
493
502
.
7.
Sheikholeslami
,
M.
,
Gorji-Bandpy
,
M.
, and
Ganji
,
D. D.
,
2021
, “
Review of Heat Transfer Enhancement Methods: Focus on Passive Methods Using Swirl Flow Devices
,”
Renew. Sustainable Energy Rev.
,
49
, pp.
444
469
.
8.
Subasi
,
A.
, and
Erdem
,
K.
,
2021
, “
An Integrated Optimization Methodology for Heat Transfer Enhancement: A Case Study on Nanofluid Flow in a Pipe Equipped With Inserts
,”
Int. J. Heat Mass Transf.
,
172
, p.
121187
.
9.
Outokesh
,
M.
,
Ajarostaghi
,
S. S. M.
,
Bozorgzadeh
,
A.
, and
Sedighi
,
K.
,
2020
, “
Numerical Evaluation of the Effect of Utilizing Twisted Tape With Curved Profile as a Turbulator on Heat Transfer Enhancement in a Pipe
,”
J. Therm. Anal. Calorim.
,
140
(
3
), pp.
1537
1553
.
10.
Arasteh
,
H.
,
Rahbari
,
A.
,
Mashayekhi
,
R.
,
Keshmiri
,
A.
,
Mahani
,
R. B.
, and
Talebizadehsardari
,
P.
,
2021
, “
Effect of Pitch Distance of Rotational Twisted Tape on the Heat Transfer and Fluid Flow Characteristics
,”
Int. J. Therm. Sci.
,
170
, p.
106966
.
11.
Manglik
,
R. M.
, and
Bergles
,
A. E.
,
1991
. “
Heat Transfer Enhancement of in Tube Flows in Process Heat Exchangers by Means of Twisted-Tape Inserts
,”
Ph.D. dissertation
,
Rensselaer Polytechnic Institute
,
Troy, New York
.
12.
Syam Sundar
,
L.
,
2023
, “
Heat Transfer, Friction Factor and Exergy Efficiency Analysis of Nanodiamond-Fe3O4/Water Hybrid Nanofluids in a Tube With Twisted Tape Inserts
,”
Ain Shams Eng. J.
,
14
(
9
), p.
102068
.
13.
Bairagi
,
S.
,
Roy
,
R.
, and
Mandal
,
B. K.
,
2023
, “
Heat Transfer Enhancement in Laminar Pipe Flow Using Al2O3–Water Nanofluid and Twisted Tape Inserts
,”
ASME J. Therm. Sci. Eng. Appl.
,
15
(
8
), p.
081003
.
14.
Whitham
,
J.
,
1896
, “
The Effect of Retarders in Fire Tubes of Steam Boilers
,”
Trans. ASME.
,
17
, pp.
450
460
.
15.
Manglik
,
R. M.
, and
Bergles
,
A. E.
,
1993
, “
Heat Transfer and Pressure Drop Correlations for Twisted-Tape Inserts in Isothermal Tubes: Part II—Transition and Turbulent Flows
,”
ASME J. Heat Transf.
,
115
(
4
), pp.
890
896
.
16.
Durga Prasad
,
P. V.
, and
Gupta
,
A. V. S. S. K. S.
,
2016
, “
Experimental Investigation on Enhancement of Heat Transfer Using Al2O3/Water Nanofluid in a U-Tube With Twisted Tape Inserts
,”
Int. Commun. Heat Mass Transf.
,
75
, pp.
154
161
.
17.
Maddah
,
H.
,
Alizadeh
,
M.
,
Ghasemi
,
N.
, and
Wan Alwi
,
S. R.
,
2014
, “
Experimental Study of Al2O3/Water Nanofluid Turbulent Heat Transfer Enhancement in the Horizontal Double Pipes Fitted With Modified Twisted Tapes
,”
Int. J. Heat Mass Transf.
,
78
, pp.
1042
1054
.
18.
Luo
,
J.
,
Alghamdi
,
A.
,
Aldawi
,
F.
,
Moria
,
H.
,
Mouldi
,
A.
,
Loukil
,
H.
,
Deifall
,
A. F.
, and
Ghoushchi
,
S. P.
,
2024
, “
Thermal-Frictional Odelling of New Special Shape Twisted Tape and Helical Coiled Wire Turbulators in Engine Heat Exchangers System
,”
Case Stud. Therm. Eng.
,
53
, p.
103877
.
19.
Murugesan
,
P.
,
Mayilsamy
,
K.
,
Suresh
,
S.
, and
Srinivasan
,
P. S. S.
,
2011
, “
Heat Transfer and Pressure Drop Characteristics in a Circular Tube Fitted With and Without V-Cut Twisted Tape Insert
,”
Int. Commun. Heat Mass Transf.
,
38
(
3
), pp.
329
334
.
20.
Cui
,
Y.
, and
Tian
,
M.
,
2010
, “
Three-Dimensional Numerical Simulation of Thermal-Hydraulic Performance of a Circular Tube With Edge-Fold-Twisted-Tape Inserts
,”
J. Hydrodyn.
,
22
(
5
), pp.
662
670
.
21.
Klaczak
,
A.
,
2000
, “
Heat Transfer by Laminar Flow in a Vertical Pipe With Twisted-Tape Inserts
,”
Heat Mass Transf.
,
36
(
3
), pp.
195
199
.
22.
Ferroni
,
P.
,
Block
,
R. E.
,
Todreas
,
N. E.
, and
Bergles
,
A. E.
,
2011
, “
Experimental Evaluation of Pressure Drop in Round Tubes Provided With Physically Separated, Multiple, Short-Length Twisted Tapes
,”
Exp. Therm. Fluid Sci.
,
35
(
7
), pp.
1357
1369
.
23.
Wang
,
Y.
,
Hou
,
M.
,
Deng
,
X.
,
Li
,
L.
,
Huang
,
C.
,
Huang
,
H.
,
Zhang
,
G.
,
Chen
,
C.
, and
Huang
,
W.
,
2011
, “
Configuration Optimization of Regularly Spaced Short-Length Twisted Tape in a Circular Tube to Enhance Turbulent Heat Transfer Using CFD Modelling
,”
Appl. Therm. Eng.
,
31
(
6–7
), pp.
1141
1149
.
24.
Man
,
C.
,
Yao
,
J.
, and
Wang
,
C.
,
2016
, “
The Experimental Study on the Heat Transfer and Friction Factor Characteristics in Tube With a New Kind of Twisted Tape Insert
,”
Int. Commun. Heat Mass Transf.
,
75
, pp.
124
129
.
25.
Eiamsa-ard
,
S.
,
Thianpong
,
C.
,
Eiamsa-ard
,
P.
, and
Promvonge
,
P.
,
2010
, “
Thermal Characteristics in a Heat Exchanger Tube Fitted With Dual Twisted Tape Elements in Tandem
,”
Int. Commun. Heat Mass Transf.
,
37
(
1
), pp.
39
46
.
26.
Hata
,
K.
, and
Masuzaki
,
S.
,
2011
, “
Twisted-Tape-Induced Swirl Flow Heat Transfer and Pressure Drop in a Short Circular Tube Under Velocities Controlled
,”
Nucl. Eng. Des.
,
241
(
11
), pp.
4434
4444
.
27.
Noorbakhsh
,
M.
,
Ajarostaghi
,
S. S. M.
,
Zaboli
,
M.
, and
Kiani
,
B.
,
2022
, “
Thermal Analysis of Nanofluids Flow in a Double Pipe Heat Exchanger With Twisted Tapes Insert in Both Sides
,”
J. Therm. Anal. Calorim.
,
147
(
5
), pp.
3965
3976
.
28.
Fazel
,
Z.
,
Sadrhosseini
,
H.
, and
Hannani
,
S. K.
,
2022
, “
Heat Transfer Intensification of Turbulent Forced Convection by Inserting Discontinuous Twisted Tapes in a Wavy Tube; Hydrothermal and Thermodynamics Analysis
,”
Chem. Eng. Process—Process Intensif.
,
181
, p.
109137
.
29.
Bergles
,
A. E.
,
1972
, “Techniques to Augment Heat Transfer,”
Handbook of Heat Transfer
,
W. M.
Rohsenow
,
J. P.
Hartnett
, and
Y. I.
Cho
., eds.,
McGraw-Hill Book Co.
,
New York
.
30.
Guha
,
A.
,
Pradhan
,
K.
, and
Jain
,
A.
,
2020
, “
Correction for Semi-Infinite Assumption in the Theories of Natural Convection and Determination of Average Nusselt Number for Finite Inclined Plates
,”
Int. J. Therm. Sci.
,
148
, p.
106062
.
31.
Guha
,
A.
,
Jain
,
A.
, and
Pradhan
,
K.
,
2019
, “
Computation and Physical Explanation of the Thermo-Fluid-Dynamics of Natural Convection Around Heated Inclined Plates With Inclination Varying From Horizontal to Vertical
,”
Int. J. Heat Mass Transf.
,
135
, pp.
1130
1151
.
32.
Akbari
,
O. A.
,
Afrouzi
,
H. H.
,
Marzban
,
A.
,
Toghraie
,
D.
,
Malekzade
,
H.
, and
Arabpour
,
A.
,
2017
, “
Investigation of Volume Fraction of Nanoparticles Effect and Aspect Ratio of the Twisted Tape in the Tube
,”
J. Therm. Anal. Calorim.
,
129
(
3
), pp.
1911
1922
.
33.
Shajahan
,
M. I.
,
Stephen
,
C.
,
Michael
,
J. J.
,
Arulprakasajothi
,
M.
,
Rathnakumar
,
P.
, and
Parthasarathy
,
M.
,
2023
, “
Heat Transfer Investigations of In-Line Conical Strip Inserts Using MWCNT/Water Nanofluid Under Laminar Flow Condition
,”
Int. J. Therm. Sci.
,
183
, p.
107844
.
34.
Nakhchi
,
M. E.
, and
Esfahani
,
J. A.
,
2021
, “
Numerical Investigation of Turbulent CuO–Water Nanofluid Inside Heat Exchanger Enhanced With Double V-Cut Twisted Tapes
,”
J. Therm. Anal. Calorim.
,
145
(
5
), pp.
2535
2545
.
35.
Pradhan
,
K.
, and
Guha
,
A.
,
2019
, “
Fluid Dynamics of Oscillatory Flow in Three-Dimensional Branching Networks
,”
Phys. Fluids
,
31
(
6
), p.
063601
.
36.
Roache
,
P. J.
,
1997
, “
Quantification of Uncertainty in Computational Fluid Dynamics
,”
Annu. Rev. Fluid Mech.
,
29
(
1
), pp.
123
160
.
37.
Manglik
,
R. M.
, and
Bergles
,
A. E.
,
1993
, “
Heat Transfer and Pressure Drop Correlations for Twisted-Tape Inserts in Isothermal Tubes: Part I—Laminar Flows
,”
ASME J. Heat Transf.
,
115
(
4
), pp.
881
889
.
38.
Wongcharee
,
K.
, and
Eiamsa-ard
,
S.
,
2011
, “
Enhancement of Heat Transfer Using CuO/Water Nanofluid and Twisted Tape With Alternate Axis
,”
Int. Commun. Heat Mass Transf.
,
38
(
6
), pp.
742
749
.
39.
Fetuga
,
I. A.
,
Olakoyejo
,
O. T.
,
Abolarin
,
S. M.
,
Adelaja
,
A. O.
,
Oluwatusin
,
O.
, and
Gbegudu
,
J. K.
,
2023
, “
Thermohydraulic Performance of a Semi-Alternated Twisted Tape Insert and Cylindrical Baffles in a Tube With Ternary Nanofluid Under Sinusoidal Wall Temperature
,”
Alexandria Eng. J.
,
73
, pp.
607
623
.
40.
Guha
,
A.
, and
Pradhan
,
K.
,
2017
, “
Secondary Motion in Three-Dimensional Branching Networks
,”
Phys. Fluids
,
29
(
6
), p.
063206
.
41.
White
,
F. M.
,
2011
,
Fluid Mechanics
,
McGraw-Hill
,
New York
.
42.
Webb
,
R. L.
,
1981
, “
Performance Evaluation Criteria for Use of Enhanced Heat Transfer Surfaces in Heat Exchanger Design
,”
Int. J. Heat Mass Transf.
,
24
(
4
), pp.
715
726
.
43.
Singh
,
S. K.
, and
Sarkar
,
J.
,
2021
, “
Improving Hydrothermal Performance of Double-Tube Heat Exchanger With Modified Twisted Tape Inserts Using Hybrid Nanofluid
,”
J. Therm. Anal. Calorim.
,
143
(
6
), pp.
4287
4298
.
You do not currently have access to this content.