Abstract

There are increasing trends to eliminate refrigerants with a high global warming potential (GWP) and use alternative environmentally friendly refrigerants in refrigeration systems. In this regard, this study presents a triple analysis of the energy, exergy, and environmental-related aspects of low-GWP hydrofluoroolefin refrigerants—R1234yf, R1234ze(E), and R1336mzz(Z)—as substitutes for the high-GWP R134a, which is used in a 200-liter household refrigerator having a 157 W cooling power. Pressure ratio, volumetric refrigeration capacity, power consumption, and coefficient of performance were studied as energy performance parameters. Exergy destruction rate and total exergy efficiency were studied as exergy performance parameters. Total equivalent warming impact was studied as an environmental performance parameter. All parameters were calculated under a condenser and ambient temperature of 30 and 40 °C, respectively, and a variable evaporator temperature of −5 to −30 °C. The outcomes revealed that R1234yf and R1234ze(E) give thermal performance close to R134a and higher environmental performance, while R1336mzz(Z) did not show thermal performance close to R134, nor did it show a clear improvement in environmental performance. R1234yf can be used as a direct replacement for R134a, but R1234ze(E) is considered a better alternative provided that the R134a compressor is replaced with a compressor with a higher displacement. The pure R1336mzz(Z) cannot be used in a refrigerator.

References

1.
EPA
,
2016
, “Transitioning to Low-GWP Alternatives in Commercial Refrigeration,” https://www.epa.gov/ozone-layer-protection/transitioning-low-gwp-alternatives-commercial-refrigeration
2.
Calm
,
J.
,
Hourahan
,
G. C.
,
Vonsild
,
A.
,
Clodic
,
D.
, and
Colbourne
,
D.
,
2015
,
2014 Report of the Refrigeration, Air Conditioning, and Heat Pumps Technical Options Committee, Ch. 2: Refrigerants
,
United Nations Environment Programme Ozone Secretariat
,
Nairobi
.
3.
Hastak
,
S. S.
, and
Kshirsagar
,
J. M.
,
2018
, “
Comparative Performance Analysis of R600a and R436a as an Alternative of R134a Refrigerant in a Domestic Refrigerator
,”
IOP Conference Series: Materials Science and Engineering
,
Sikkim, India
,
Dec. 8–10, 2017
,
IOP Publishing
, p.
012047
.
4.
Xiao
,
B.
,
Chang
,
H.
,
He
,
L.
,
Zhao
,
S.
, and
Shu
,
S.
,
2020
, “
Annual Performance Analysis of an Air Source Heat Pump Water Heater Using a New Eco-friendly Refrigerant Mixture as an Alternative to R134a
,”
Renew. Energy
,
147
, pp.
2013
2023
.
5.
Poongavanam
,
G.
,
Sivalingam
,
V.
,
Prabakaran
,
R.
,
Salman
,
M.
, and
Kim
,
S. C.
,
2021
, “
Selection of the Best Refrigerant for Replacing R134a in Automobile Air Conditioning System Using Different MCDM Methods: A Comparative Study
,”
Case Stud. Therm. Eng.
,
27
, p.
101344
.
6.
Padmavathy
,
S. R.
,
Chockalingam
,
M. P.
,
Kamaraj
,
N.
,
Glivin
,
G.
,
Thangaraj
,
V.
, and
Moorthy
,
B.
,
2022
, “
Performance Studies of Low GWP Refrigerants as Environmental Alternatives for R134a in Low-Temperature Applications
,”
Environ. Sci. Pollut. Res.
,
29
(
57
), pp.
85945
85954
.
7.
Mohammad
,
W. S.
, and
Jassim
,
A. O.
,
2014
, “
Experimental and Theoretical Investigation of Propane/Butane and Propane/Isobutane Mixtures as an Alternative to R134a in a Domestic Refrigerator
,”
Eng. Technol. J.
,
32
(
5 Part A
), pp.
1266
1286
.
8.
Siddegowda
,
P.
,
Mundur Sannappagowda
,
G.
,
Jain
,
V.
, and
Javare Gowda
,
S.
,
2019
, “
Hydrocarbons as Alternate Refrigerants to Replace R134a in Domestic Refrigerators
,”
Rev. Compos. Matér. Ava.
,
29
(
2
), pp.
95
99
.
9.
Ghanbarpour
,
M.
,
Mota-Babiloni
,
A.
,
Badran
,
B. E.
, and
Khodabandeh
,
R.
,
2021
, “
Energy, Exergy, and Environmental (3E) Analysis of Hydrocarbons as Low GWP Alternatives to R134a in Vapor Compression Refrigeration Configurations
,”
Appl. Sci.
,
11
(
13
), p.
6226
.
10.
Kadhim
,
S. A.
,
2024
, “
Thermodynamic and Environmental Analysis of Hydrocarbon Refrigerants as Alternatives to R134a in Domestic Refrigerator
,”
Int. J. Thermodyn.
,
27
(
2
), pp.
10
18
.
11.
Zhai
,
R.
,
Yang
,
Z.
,
Zhang
,
Y.
,
Lv
,
Z.
, and
Feng
,
B.
,
2020
, “
Effect of Temperature and Humidity on the Flammability Limits of Hydrocarbons
,”
Fuel
,
270
, p.
117442
.
12.
Dreepaul
,
R.
,
Rughoo
,
D.
, and
Busawon
,
K.
,
2020
, “
A Comparative Assessment of R404A and Ammonia (R717) in an Industrial Set-up
,”
2020 3rd International Conference on Emerging Trends in Electrical, Electronic and Communications Engineering (ELECOM)
,
Balaclava, Mauritius
,
Nov. 25–27
,
IEEE
, pp.
147
152
.
13.
Maina
,
P.
, and
Huan
,
Z.
,
2015
, “
A Review of Carbon Dioxide as a Refrigerant in Refrigeration Technology
,”
S. Afr. J. Sci.
,
111
(
9–10
), pp.
1
10
.
14.
Nair
,
V.
,
2021
, “
HFO Refrigerants: A Review of Present Status and Future Prospects
,”
Int. J. Refrig.
,
122
, pp.
156
170
.
15.
IPCC
,
2013
,
Climate Change 2013: The Physical Science Basis
,
Cambridge University Press
,
Cambridge
.
16.
Janković
,
Z.
,
Atienza
,
J. S.
, and
Suárez
,
J. A. M.
,
2015
, “
Thermodynamic and Heat Transfer Analyses for R1234yf and R1234ze(E) as Drop-In Replacements for R134a in a Small Power Refrigerating System
,”
Appl. Therm. Eng.
,
80
, pp.
42
54
.
17.
Belman-Flores
,
J. M.
,
Rodríguez-Muñoz
,
A.
,
Pérez-Reguera
,
C. G.
, and
Mota-Babiloni
,
A.
,
2017
, “
Experimental Study of R1234yf as a Drop-In Replacement for R134a in a Domestic Refrigerator
,”
Int. J. Refrig.
,
81
, pp.
1
11
.
18.
Sánchez
,
D.
,
Cabello
,
R.
,
Llopis
,
R.
,
Arauzo
,
I.
,
Catalán-Gil
,
J.
, and
Torrella
,
E.
,
2017
, “
Energy Performance Evaluation of R1234yf, R1234ze(E), R600a, R290 and R152a as Low-GWP R134a Alternatives
,”
Int. J. Refrig.
,
74
, pp.
269
282
.
19.
de Paula
,
C. H.
,
Duarte
,
W. M.
,
Rocha
,
T. T. M.
,
de Oliveira
,
R. N.
, and
Maia
,
A. A. T.
,
2020
, “
Optimal Design and Environmental, Energy and Exergy Analysis of a Vapor Compression Refrigeration System Using R290, R1234yf, and R744 as Alternatives to Replace R134a
,”
Int. J. Refrig.
,
113
, pp.
10
20
.
20.
de Paula
,
C. H.
,
Duarte
,
W. M.
,
Rocha
,
T. T. M.
,
de Oliveira
,
R. N.
,
de Paoli Mendes
,
R.
, and
Maia
,
A. A. T.
,
2020
, “
Thermo-economic and Environmental Analysis of a Small Capacity Vapor Compression Refrigeration System Using R290, R1234yf, and R600a
,”
Int. J. Refrig.
,
118
, pp.
250
260
.
21.
Sánchez
,
D.
,
Andreu-Nácher
,
A.
,
Calleja-Anta
,
D.
,
Llopis
,
R.
, and
Cabello
,
R.
,
2022
, “
Energy Impact Evaluation of Different Low-GWP Alternatives to Replace R134a in a Beverage Cooler. Experimental Analysis and Optimization for the Pure Refrigerants R152a, R1234yf, R290, R1270, R600a and R744
,”
Energy Convers. Manage.
,
256
, p.
115388
.
22.
Ramírez-Hernández
,
H.
,
Morales-Fuentes
,
A.
,
Sánchez-Cruz
,
F.
,
Méndez-Díaz
,
S.
,
García-Lara
,
H.
, and
Martínez-Martínez
,
S.
,
2022
, “
Experimental Study on the Operating Characteristics of a Display Refrigerator Phasing Out R134a to R1234ze(E) and Its Binary Blends
,”
Int. J. Refrig.
,
138
, pp.
1
12
.
23.
Yi
,
K.
,
Zhao
,
Y.
,
Liu
,
G.
,
Yang
,
Q.
,
Yu
,
G.
, and
Li
,
L.
,
2022
, “
Performance Evaluation of Centrifugal Refrigeration Compressor Using R1234yf and R1234ze(E) as Drop-In Replacements for R134a Refrigerant
,”
Energies
,
15
(
7
), p.
2552
.
24.
Yataganbaba
,
A.
,
Kilicarslan
,
A.
, and
Kurtbaş
,
İ.
,
2015
, “
Exergy Analysis of R1234yf and R1234ze as R134a Replacements in a Two Evaporator Vapour Compression Refrigeration System
,”
Int. J. Refrig.
,
60
, pp.
26
37
.
25.
Khatoon
,
S.
, and
Karimi
,
M. N.
,
2023
, “
Thermodynamic Analysis of Two Evaporator Vapor Compression Refrigeration System With Low GWP Refrigerants in Automobiles
,”
Int. J. Air-Cond. Refrig.
,
31
(
1
), p.
2
.
26.
NIST
,
2010
,
NIST Reference Fluid Thermodynamic and Transport Properties Database (REFPROP), v. 9.0
,
National Institute of Standards and Technology
,
Gaithersburg, MD
.
27.
ASHRAE
,
2017
, “ASHRAE Fundamentals (SI),” Handbook, Ch. 29.
28.
Mohanraj
,
M.
,
Jayaraj
,
S.
, and
Muraleedharan
,
C.
,
2008
, “
Comparative Assessment of Environment-Friendly Alternatives to R134a in Domestic Refrigerators
,”
Energy Efficiency
,
1
, pp.
189
198
.
29.
Islam
,
M. A.
,
Srinivasan
,
K.
,
Thu
,
K.
, and
Saha
,
B. B.
,
2017
, “
Assessment of Total Equivalent Warming Impact (TEWI) of Supermarket Refrigeration Systems
,”
Int. J. Hydrogen Energy
,
42
(
43
), pp.
26973
26983
.
30.
Carbonfootprint
,
2022
, “Carbon Footprint Country Specific Electricity Grid Greenhouse Gas Emission Factors,” https://www.carbonfootprint.com, Last Updated March 1–11, 2022.
31.
Direk
,
M.
,
Kelesoglu
,
A.
, and
Akin
,
A.
,
2017
, “
Theoretical Performance Analysis of an R1234yf Refrigeration Cycle Based on the Effectiveness of Internal Heat Exchanger
,”
Hittite J. Sci. Eng.
,
4
(
1
), pp.
23
30
.
32.
Chen
,
Q.
,
Zhou
,
L.
,
Yan
,
G.
, and
Yu
,
J.
,
2019
, “
Theoretical Investigation on the Performance of a Modified Refrigeration Cycle With R170/R290 for Freezers Application
,”
Int. J. Refrig.
,
104
, pp.
282
290
.
33.
Elakdhar
,
M.
,
Nehdi
,
E.
, and
Kairouani
,
L.
,
2007
, “
Analysis of a Compression/Ejection Cycle for Domestic Refrigeration
,”
Ind. Eng. Chem. Res.
,
46
(
13
), pp.
4639
4644
.
34.
Kadhim
,
S. A.
,
Askar
,
A. H.
, and
Saleh
,
A. A. M.
,
2024
, “
An Enhancement of Double Pipe Heat Exchanger Performance at a Constant Wall Temperature Using a Nanofluid of Iron Oxide and Refrigerant Vapor
,”
J. Therm. Eng.
,
10
(
1
), pp.
78
87
.
35.
Hashim
,
R. H.
,
Hammdi
,
S. H.
,
Eidan
,
A. A.
,
Alsayah
,
A. M.
, and
Abdulridh
,
D. M.
,
2024
, “
Performance Enhancement of Air-Conditioning System Using Heat Pipe Heat Exchanger
,”
AIP Conference Proceedings 2024
,
Baghdad, Iraq
,
Oct. 5–6
,
AIP Publishing
, p.
030002
.
36.
Ali
,
H. M.
,
Kadhim
,
S. A.
, and
Ibrahim
,
O. A. A. M.
,
2023
, “
Evaluating Refrigerant Purity Characteristics: An Experimental Approach to Assess Impact on Vapor-Compression Refrigeration System Performance
,”
Int. J. Heat Technol.
,
41
(
4
), pp.
883
890
.
37.
Sarkar
,
J.
, and
Bhattacharyya
,
S.
,
2012
, “
Application of Graphene and Graphene-Based Materials in Clean Energy-Related Devices Minghui
,”
Arch. Thermodyn.
,
33
(
4
), pp.
23
40
.
38.
Ali
,
H. M.
, and
Mahdi
,
L. A.
,
2023
, “
Exergy Analysis of Chest Freezer Working With R-134a and R-600a at Steady State Conditions
,”
Int. J. Energy Prod. Manage.
,
8
(
2
), pp.
63
70
.
39.
Pitarch
,
M.
,
Hervas-Blasco
,
E.
,
Navarro-Peris
,
E.
, and
Corberan
,
J. M.
,
2019
, “
Exergy Analysis on a Heat Pump Working Between a Heat Sink and a Heat Source of Finite Heat Capacity Rate
,”
Int. J. Refrig.
,
99
, pp.
337
350
.
40.
Mota-Babiloni
,
A.
,
Barbosa
,
J. R.
Jr
,
Makhnatch
,
P.
, and
Lozano
,
J. A.
,
2020
, “
Assessment of the Utilization of Equivalent Warming Impact Metrics in Refrigeration, Air Conditioning and Heat Pump Systems
,”
Renew. Sustain. Energy Rev.
,
129
, p.
109929
.
41.
Constantino
,
M. C.
, and
Kanizawa
,
F. T.
,
2022
, “
Evaluation of Pressure Drop Effect on COP of Single-Stage Vapor Compression Refrigeration Cycles
,”
Therm. Sci. Eng. Prog.
,
28
, p.
101048
.
42.
Ashour
,
A. M.
,
Salman
,
A. D.
, and
Al Jubori
,
A. M.
,
2024
, “
Performance of Hybrid Vaccine Freezer That Combined Thermoelectric Coolers With Vapor Compression Refrigeration: Experimental Assessment
,”
Heat Transfer
,
53
(
3
), pp.
1073
1094
.
You do not currently have access to this content.