Abstract

Performance, safety, and longevity of batteries are all strongly impacted by thermal management, which is an essential component of battery design and operation. This work examines how accurate temperature control can result in significant improvements in performance and reliability with a focus on battery thermal heating. Predicting the temperature achieved by the battery during operation not only avoids conditions that lead to thermal runaway but also guarantees that the battery is used optimally within an optimal temperature range. Within the optimal temperature range, several advantages are observed. First, battery efficiency improves significantly as electrochemical processes occur more efficiently. Furthermore, by lowering the possibility of short circuits and improving overall battery safety, thermal stability aids in the prevention of undesirable phenomena like dendrite growth. By lessening the deterioration brought on by thermal degradation processes, thermal optimization also affects battery longevity. Based on experimental tests, a finite element method (FEM) model is developed. A model for thermal runaway propagation is established by combining thermal runaway and conduction models with an Arrhenius law-based combustion model. The study employed a cylindrical Li-ion cell to conduct tests, taking into account three parameters: discharge rate (CRate), ambient temperature (Tamb), and initial battery temperature (T0). An algorithm based on the three variables was developed using the simulation results. The algorithm enables the accurate prediction of rising battery temperature during use, facilitating the setting of an optimal maximum discharge rate considering initial and ambient temperatures, thereby ensuring optimal performance within the desired temperature range.

Graphical Abstract Figure
Graphical Abstract Figure
Close modal

References

1.
Metallo
,
A.
,
2022
, “
Emissivity Prediction for an IR Camera During Laser Welding of Aluminum
,”
Int. J. Thermodyn.
,
25
(
4
), pp.
24
34
.
2.
Smith
,
J.
,
Singh
,
R.
,
Hinterberger
,
M.
, and
Mochizuki
,
M.
,
2018
, “
Battery Thermal Management System for Electric Vehicle Using Heat Pipes
,”
Int. J. Therm. Sci.
,
134
, pp.
517
529
.
3.
Metallo
,
A.
,
2023
, “
Optimization of a Dry Peeling System for Tomatoes Using Approximate Solutions
,”
Int. J. Thermodyn.
,
26
(
2
), pp.
78
87
.
4.
Lorusso
,
A.
,
Marongiu
,
F.
,
Melesse
,
T. Y.
,
Metallo
,
A.
,
Mosca
,
R.
, and
Santaniello
,
D.
,
2023
, “
IoT Approach for Development and Optimization of a System for Dry Peeling of Tomatoes
,”
Proceedings of Eighth International Congress on Information and Communication Technology (ICICT 2023), Lecture Notes in Networks and Systems
,
London
.
5.
Cuccurullo
,
G.
,
Giordano
,
L.
, and
Metallo
,
A.
,
2017
, “
Analytical Solutions for Tomato Peeling With Combined Heat Flux and Convective Boundary Conditions
,”
J. Phys.: Conf. Ser.
,
923
, p.
012045
.
6.
Metallo
,
A.
,
2023
, “
Semi-analytical Solution for Modelling Moving Heat Sources in a Semi-infinite Medium With Radiative and Convective Boundary Conditions
,”
Int. J. Thermodyn.
,
26
(
2
), pp.
1
11
.
7.
Melcher
,
A.
,
Ziebert
,
C.
,
Lei
,
B.
,
Zhao
,
W.
,
Luo
,
J.
,
Rohde
,
M.
, and
Seifert
,
H. J.
,
2016
, “
Modeling and Simulation of the Thermal Runaway in Cylindrical 18650 Lithium-Ion Batteries
,”
Meet. Abstr. MA2016-01: 425
,
San Diego, CA
,
May 29–June 2
.
8.
Linden
,
D.
, and
Reddy
,
T. B.
,
2011
,
Handbook of Batteries
, 4th ed.,
McGraw Hill
,
New York
.
9.
Meng
,
H.
,
Pang
,
X.
, and
Zhen
,
Z.
,
2013
, “
Recent Progress in High-Voltage Lithium Ion Batteries
,”
J. Power Sources
,
237
, pp.
229
242
.
10.
Santhanam
,
R.
, and
Rambabu
,
B.
,
2010
, “
Research Progress in High Voltage Spinel LiNi0.5Mn1.5O4 Material
,”
J. Power Sources
,
195
(
17
), pp.
5442
5451
.
11.
Wanger
,
T. C.
,
2011
, “
The Lithium Future-Resources, Recycling, and the Environment
,”
Conserv. Lett.
,
4
(
3
), pp.
202
206
.
12.
Wang
,
Y.
,
Li
,
H.
,
He
,
P.
,
Hosono
,
E.
, and
Zhou
,
H.
,
2010
, “
Nano Active Materials for Lithium-Ion Batteries
,”
Nanoscale
,
2
(
8
), pp.
1294
1305
.
13.
Lu
,
L.
,
Han
,
X.
,
Li
,
J.
,
Hua
,
J.
, and
Ouyang
,
M.
,
2013
, “
A Review on the Key Issues for Lithium-Ion Battery Management in Electric Vehicles
,”
J. Power Sources
,
226
, pp.
272
288
.
14.
Scrosati
,
B.
,
Hassoun
,
J.
, and
Sun
,
Y. K.
,
2011
, “
Lithium-Ion Batteries. A Look Into the Future
,”
Energy Environ. Sci.
,
4
(
9
), pp.
3287
3295
.
15.
Liu
,
C.
,
Li
,
F.
,
Ma
,
L. P.
, and
Cheng
,
H. M.
,
2010
, “
Advanced Materials for Energy Storage
,”
Adv. Mater.
,
22
(
8
), pp.
E28
E62
.
16.
Pendergast
,
D. R.
,
Demauro
,
E. P.
,
Fletcher
,
M.
,
Stimson
,
E.
, and
Mollendorf
,
J. C.
,
2011
, “
A Rechargeable Lithium-Ion Battery Module for Underwater Use
,”
J. Power Sources
,
196
(
2
), pp.
793
800
.
17.
Smart
,
M. C.
,
Ratnakumar
,
B. V.
,
Whitcanack
,
L. D.
,
Puglia
,
F. J.
,
Santee
,
S.
, and
Gitzendanner
,
R.
,
2010
, “
Life Verification of Large Capacity Yardney Li-Ion Cells and Batteries in Support of NASA Missions
,”
Int. J. Energy Res.
,
34
(
2
), pp.
116
132
.
18.
Tran
,
M. K.
,
Mevawalla
,
A.
,
Aziz
,
A.
,
Panchal
,
S.
,
Xie
,
Y.
, and
Fowler
,
M.
,
2022
, “
A Review of Lithium-Ion Battery Thermal Runaway Modeling and Diagnosis Approaches
,”
Processes
,
10
(
6
), p.
1192
.
19.
Shahid
,
S.
, and
Agelin-Chaab
,
M.
,
2022
, “
A Review of Thermal Runaway Prevention and Mitigation Strategies for Lithium-Ion Batteries
,”
Energy Convers. Manage.: X
,
16
(
2022
), p.
100310
.
20.
Rui
,
X.
,
Ren
,
D.
,
Liu
,
X.
,
Wang
,
X.
,
Wang
,
K.
,
Lu
,
Y.
,
Li
,
L.
, et al
,
2023
, “
Distinct Thermal Runaway Mechanisms of Sulfide-Based All-Solid-State Batteries
,”
Energy Environ. Sci.
,
16
(8)
, pp.
3552
3563
.
21.
Wang
,
H.
,
Xu
,
H.
,
Zhao
,
Z.
,
Wang
,
Q.
,
Jin
,
C.
,
Li
,
Y.
,
Sheng
,
J.
, et al
,
2022
, “
An Experimental Analysis on Thermal Runaway and Its Propagation in Cell-to-Pack Lithium-Ion Batteries
,”
Appl. Therm. Eng.
,
211
, p.
108418
.
22.
An
,
S. J.
,
Li
,
J.
,
Daniel
,
C.
,
Mohanty
,
D.
,
Nagpure
,
S.
, and
Wood
,
D. L.
,
2016
, “
The State of Understanding of the Lithium-Ion-Battery Graphite Solid Electrolyte Interphase (SEI) and Its Relationship to Formation Cycling
,”
Carbon
,
105
, pp.
52
76
.
23.
Melcher
,
A.
,
Ziebert
,
C.
,
Rohde
,
M.
, and
Seifert
,
H. J.
,
2016
, “
Modeling and Simulation of the Thermal Runaway Behavior of Cylindrical Li-Ion Cells-Computing of Critical Parameters
,”
Energies
,
9
(
4
), p.
292
.
24.
Coman
,
P. T.
,
Darcy
,
E. C.
,
Veje
,
C. T.
, and
White
,
R. E.
,
2017
, “
Modelling Li-Ion Cell Thermal Runaway Triggered by an Internal Short Circuit Device Using an Efficiency Factor and Arrhenius Formulations
,”
J. Electrochem. Soc.
,
164
(
4
), pp.
A587
A593
.
25.
Chen
,
Y. J. W.
, and
Evans
,
J. W.
,
1996
, “
Thermal Analysis of Lithium-Ion Batteries
,”
J. Electrochem. Soc.
,
143
(
9
), pp.
2708
2712
.
26.
Zhang
,
L.
,
Zhao
,
P.
,
Xu
,
M.
, and
Wang
,
X.
,
2020
, “
Computational Identification of the Safety Regime of Li-Ion Battery Thermal Runaway
,”
Appl. Energy
,
261
, p.
114440
.
27.
Ouyang
,
D.
,
Weng
,
J.
,
Chen
,
M.
, and
Wang
,
J.
,
2020
, “
Impact of High-Temperature Environment on the Optimal Cycle Rate of Lithium-Ion Battery
,”
J. Energy Storage
,
28
, p.
101242
.
28.
Ma
,
S.
,
Jiang
,
M.
,
Tao
,
P.
,
Song
,
C.
,
Wu
,
J.
,
Wang
,
J.
,
Deng
,
T.
, and
Shang
,
W.
,
2018
, “
Temperature Effect and Thermal Impact in Lithium-Ion Batteries: A Review
,”
Prog. Nat. Sci.: Mater. Int.
,
28
(
6
), pp.
653
666
.
29.
Goodenough
,
J. B.
, and
Kim
,
Y.
,
2010
, “
Challenges for Rechargeable Li Batteries
,”
Chem. Mater.
,
22
(
3
), pp.
587
603
.
30.
Ji
,
Y.
,
Zhang
,
Y.
, and
Wang
,
C. Y.
,
2013
, “
Li-Ion Cell Operation at Low Temperatures
,”
J. Electrochem. Soc.
,
160
(
4
), pp.
A636
A649
.
31.
Hou
,
J.
,
Yang
,
M.
,
Wang
,
D.
, and
Zhang
,
J.
,
2020
, “
Fundamentals and Challenges of Lithium Ion Batteries at Temperatures Between −40 and 60 °C
,”
Adv. Energy Mater.
,
10
(
18
), p.
1904152
.
32.
Alipour
,
M.
,
Kizilel
,
R.
, and
Conte
,
F. V.
,
2020
, “
A Review on Temperature-Dependent Electrochemical Properties, Aging, and Performance of Lithium-Ion Cells
,”
Batteries
,
6
(
3
), p.
35
.
33.
Belt
,
J. R.
,
Ho
,
C. D.
,
Miller
,
T. J.
,
Habib
,
M. A.
, and
Duong
,
T. Q.
,
2005
, “
The Effect of Temperature on Capacity and Power in Cycled Lithium Ion Batteries
,”
J. Power Sources
,
142
(
1–2
), pp.
354
360
.
34.
Liu
,
H.
,
Wei
,
Z.
,
He
,
W.
, and
Zhao
,
J.
,
2017
, “
Thermal Issues About Li-Ion Batteries and Recent Progress in Battery Thermal Management Systems: A Review
,”
Energy Convers. Manage.
,
150
, pp.
304
330
.
35.
Mevawalla
,
A.
,
Panchal
,
S.
,
Tran
,
M.-K.
,
Fowler
,
M.
, and
Fraser
,
R.
,
2020
, “
Mathematical Heat Transfer Modeling and Experimental Validation of Lithium-Ion Battery Considering: Tab and Surface Temperature, Separator, Electrolyte Resistance, Anode–Cathode Irreversible and Reversible Heat
,”
Batteries
,
6
(
4
), p.
61
.
36.
Madani
,
S. S.
,
Ziebert
,
C.
, and
Marzband
,
M.
,
2023
, “
Thermal Behavior Modeling of Lithium-Ion Batteries: A Comprehensive Review
,”
Symmetry
,
15
(
8
), p.
1597
.
37.
Zhang
,
L.
,
Shen
,
Z.
,
Sajadi
,
S. M.
,
Prabuwono
,
A. S.
,
Mahmoud
,
M. Z.
,
Cheraghian
,
G.
, and
Tag El Din
,
E. M.
,
2022
, “
The Machine Learning in Lithium-Ion Batteries: A Review
,”
Eng. Anal. Boundary Elem.
,
141
, pp.
1
16
.
38.
Arora
,
S.
,
Kapoor
,
A.
, and
Shen
,
W.
,
2018
, “
A Novel Thermal Management System for Improving Discharge/Charge Performance of Li-Ion Battery Packs Under Abuse
,”
J. Power Sources
,
378
, pp.
759
775
.
39.
Jaguemont
,
J.
, and
Van Mierlo
,
J.
,
2020
, “
A Comprehensive Review of Future Thermal Management Systems for Battery-Electrified Vehicles
,”
J. Energy Storage
,
31
, p.
101551
.
40.
An
,
Z.
,
Jia
,
L.
,
Ding
,
Y.
,
Dang
,
C.
, and
Li
,
X.
,
2017
, “
A Review on Lithium-Ion Power Battery Thermal Management Technologies and Thermal Safety
,”
J. Therm. Sci.
,
26
(
5
), pp.
391
412
.
41.
Bibin
,
C.
,
Vijayaram
,
M.
,
Suriya
,
V.
,
Sai Ganesh
,
R.
, and
Soundarraj
,
S.
,
2020
, “
A Review on Thermal Issues in Li-Ion Battery and Recent Advancements in Battery Thermal Management System
,”
Mater. Today: Proc.
,
33
(
1
), pp.
116
128
.
42.
Xu
,
J.
, and
Hendricks
,
C.
,
2019
, “
A Multiphysics Simulation of the Thermal Runaway in Large-Format Lithium-Ion Batteries
,”
2019 18th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems
,
Las Vegas, NV
, pp.
815
821
.
43.
Bebernes
,
J.
, and
Eberly
,
D.
,
1989
, “Mathematical Problems From Combustion Theory,”
Applied Mathematical Sciences
,
Springer Verlag
,
Berlin
, p.
83
.
44.
Volpert
,
V.
,
2014
,
Elliptic Partial Differential Equations, Volume 2: Reactions-Diffusion Equations
,
Birkhäuser
,
Basel
.
45.
Hatchard
,
T. D.
,
MacNeil
,
D. D.
,
Basu
,
A.
, and
Dahn
,
J. R.
,
2001
, “
Thermal Model of Cylindrical and Prismatic Lithium-Ion Cells
,”
J. Electrochem. Soc.
,
148
(
7
), pp.
A755
A761
.
46.
Cianciullo
,
M.
,
Vilardi
,
G.
,
Mazzarotta
,
B.
, and
Bubbico
,
R.
,
2022
, “
Simulation of the Thermal Runaway Onset in Li-Ion Cells-Influence of Cathode Materials and Operating Conditions
,”
Energies
,
15
(
11
), p.
4169
.
47.
Du
,
S. L.
,
Lai
,
Y. Q.
,
Jia
,
M.
,
Cheng
,
Y.
,
Zhang
,
H. L.
,
Zhang
,
K.
, and
Liu
,
Y. X.
,
2014
, “
Electrothermal Characteristics Simulation of Cylindrical Automotive Lithium-Ion Battery
,”
Chin. J. Nonferrous Met.
,
24
(
7
), pp.
1823
1830
.
48.
Sun
,
J.
,
Wei
,
G.
,
Pei
,
L.
,
Lu
,
R.
,
Song
,
K.
,
Wu
,
C.
, and
Zhu
,
C.
,
2015
, “
Online Internal Temperature Estimation for Lithium-Ion Batteries Based on Kalman Filter
,”
Energies
,
8
(
5
), pp.
4400
4415
.
49.
Xiong
,
R.
,
Tian
,
J.
,
Mu
,
H.
, and
Wang
,
C.
,
2017
, “
A Systematic Model-Based Degradation Behavior Recognition and Health Monitoring Method for Lithium-Ion Batteries
,”
Appl. Energy
,
207
, pp.
372
383
.
50.
Zou
,
C.
,
Manzie
,
C.
,
Nešić
,
D.
, and
Kallapur
,
A. G.
,
2016
, “
Multi-time-scale Observer Design for State-of-Charge and State-of-Health of a Lithium-Ion Battery
,”
J. Power Sources
,
335
, pp.
121
130
.
51.
Xiong
,
R.
,
Yu
,
Q.
,
Wang
,
L. Y.
, and
Lin
,
C.
,
2017
, “
A Novel Method to Obtain the Open Circuit Voltage for the State of Charge of Lithium Ion Batteries in Electric Vehicles by Using H Infinity Filter
,”
Appl. Energy
,
207
, pp.
346
353
.
52.
Wu
,
X.
,
Lv
,
S.
, and
Chen
,
J.
,
2017
, “
Determination of the Optimum Heat Transfer Coefficient and Temperature Rise Analysis for a Lithium-Ion Battery Under the Conditions of Harbin City Bus Driving Cycles
,”
Energies
,
10
(
11
), p.
1723
.
53.
Schuster
,
E.
,
Ziebert
,
C.
,
Melcher
,
A.
,
Rohde
,
M.
, and
Seifert
,
H. J.
,
2015
, “
Thermal Behavior and Electrochemical Heat Generation in a Commercial 40 A h Lithium Ion Pouch Cell
,”
J. Power Sources
,
286
, pp.
580
589
.
54.
Abraham
,
D. P.
,
Roth
,
E. P.
,
Kostecki
,
R.
,
McCarthy
,
K.
,
MacLaren
,
S.
, and
Doughty
,
D. H.
,
2006
, “
Diagnostic Examination of Thermally Abused High-Power Lithium-Ion Cells
,”
J. Power Sources
,
161
(
1
), pp.
648
657
.
55.
Peng
,
P.
,
Sun
,
Y.
, and
Jiang
,
F.
,
2014
, “
Numerical Simulations and Thermal Behavior Analysis for Oven Thermal Abusing of LiCoO2 Lithium-Ion Battery
,”
CIESC J.
,
65
, pp.
647
657
.
56.
Frank-Kamentstskij
,
D. A.
,
1969
,
Diffusion and Heat Transfer in Chemical Kinetics
,
Plenum Press
,
New York
.
You do not currently have access to this content.