Abstract

To address the issue of excessive temperature rises within the field of electronic device cooling, this study adopts a multi-parameter optimization method. The primary objective is to explore and realize the design optimization of the shell structure of the high-voltage control box, aiming to effectively mitigate the temperature rise in internal components and enhance their thermal management efficacy without altering the fan performance, environmental conditions, or spatial layout. Initially, the study employs computational fluid dynamics methods to investigate the heat dissipation characteristics of the high-voltage control box, subsequently verifying the simulation parameters' accuracy through temperature rise tests. Building upon this foundation, the article conducts a thorough analysis of how the position and shape of the box's openings impact the device's temperature rise. The findings suggest that configuring circular openings on the front and rear sides can optimize the heat dissipation effect. Moreover, the SHERPA algorithm was employed to refine the size and distribution of the openings on the outer shell of the high-voltage control box through multi-parameter optimization, yielding locally optimal structural parameters. Post-optimization, the temperature measurement points within the high-voltage control box exhibited a maximum reduction in temperature rise of 27.16%. The pivotal contribution of this methodology is the application of a data-driven decision-making process for the enhancement of conventional heat dissipation designs. This research offers invaluable practical insights and novel perspectives on the optimization of thermal management designs for box-type electronic devices, significantly advancing the field of thermal management technology in electronic devices.

Graphical Abstract Figure
Graphical Abstract Figure
Close modal

References

1.
Bagalini
,
V.
,
Zhao
,
B.
,
Wang
,
R.
, and
Desideri
,
U.
,
2019
, “
Solar PV-Battery-Electric Grid-Based Energy System for Residential Applications: System Configuration and Viability
,”
Research
,
2019
.
2.
Mannepalli
,
K.
,
Vinoth
,
K.
,
Mohapatra
,
S. K.
,
Rahul
,
R.
,
Gangodkar
,
D. P.
,
Madduri
,
A.
,
Ravichandran
,
M.
,
Sathyamurthy
,
R.
, and
Mohanavel
,
V.
,
2022
, “
Allocation of Optimal Energy From Storage Systems Using Solar Energy
,”
Energy Rep.
,
8
, pp.
836
846
.
3.
Vykhodtsev
,
A. V.
,
Jang
,
D.
,
Wang
,
Q.
,
Rosehart
,
W.
, and
Zareipour
,
H.
,
2022
, “
A Review of Modelling Approaches to Characterize Lithium-Ion Battery Energy Storage Systems in Techno-Economic Analyses of Power Systems
,”
Renew. Sustain. Energy Rev.
,
166
, p.
112584
.
4.
Xiong
,
R.
,
Pan
,
Y.
,
Shen
,
W.
,
Li
,
H.
, and
Sun
,
F.
,
2020
, “
Lithium-Ion Battery Aging Mechanisms and Diagnosis Method for Automotive Applications: Recent Advances and Perspectives
,”
Renew. Sustain. Energy Rev.
,
131
, p.
110048
.
5.
Yang
,
Y.
,
Zhou
,
Q.
,
Zhang
,
L.
,
Du
,
D.
,
Zheng
,
M.
,
Niu
,
Q.
,
Gao
,
L.
, and
Yuan
,
X.
,
2022
, “
Recent Progresses in State Estimation of Lithium-Ion Battery Energy Storage Systems
,”
Trans. Inst. Meas. Control
.
6.
Liao
,
X.
,
Ma
,
C.
,
Peng
,
X.
,
Garg
,
A.
, and
Bao
,
N.
,
2019
, “
Temperature Distribution Optimization of an Air-Cooling Lithium-Ion Battery Pack in Electric Vehicles Based on the Response Surface Method
,”
ASME J. Electrochem. Energy Convers. Storage
,
16
(
4
), p.
041002
.
7.
Sharma
,
D. K.
, and
Prabhakar
,
A.
,
2021
, “
A Review on Air Cooled and Air Centric Hybrid Thermal Management Techniques for Li-Ion Battery Packs in Electric Vehicles
,”
J. Energy Storage
,
41
, p.
102885
.
8.
Shen
,
H.
,
Li
,
M.
,
Wang
,
Y.
,
Wang
,
H.
,
Feng
,
X.
, and
Wang
,
J.
,
2024
, “
Effect of Liquid Cooling Structure of Confluence Channel on Thermal Performance of Lithium-Ion Batteries
,”
ASME J. Electrochem. Energy Convers. Storage
,
21
(
1
), p.
011001
.
9.
Wu
,
N.
,
Chen
,
Y.
,
Lin
,
B.
,
Li
,
J.
, and
Zhou
,
X.
,
2022
, “
Thermal Performance Evaluation of Boiling Cooling System for the High-Rate Large-Format Lithium-Ion Battery Under Coolant Starvations
,”
J. Energy Storage
,
55
(
3
), p.
105616
.
10.
Wang
,
Y.
,
Wang
,
Z.
,
Min
,
H.
,
Li
,
H.
, and
Li
,
Q.
,
2021
, “
Performance Investigation of a Passive Battery Thermal Management System Applied With Phase Change Material
,”
J. Energy Storage
,
35
(
2
), p.
102279
.
11.
Wang
,
S.
,
Lu
,
L.
,
Ren
,
D.
,
Feng
,
X.
,
Gao
,
S.
, and
Ouyang
,
M.
,
2019
, “
Experimental Investigation on the Feasibility of Heat Pipe-Based Thermal Management System to Prevent Thermal Runaway Propagation
,”
ASME J. Electrochem. Energy Convers. Storage
,
16
(
3
), p.
031006
.
12.
Hasan
,
H. A.
,
Togun
,
H.
,
Mohammed
,
H. I.
,
Abed
,
A. M.
, and
Homod
,
R. Z.
,
2023
, “
CFD Simulation of Effect Spacing Between Lithium-Ion Batteries by Using Flow Air Inside the Cooling Pack
,”
J. Energy Storage
,
72
, p.
108631
.
13.
Mahek
,
M. K.
,
Alkhedher
,
M.
,
Ghazal
,
M.
,
Abdelkareem
,
M. A.
,
Ramadan
,
M.
, and
Olabi
,
A.-G.
,
2023
, “
Effects of Control Volume Outlet Variation on Axial Air Cooling of Lithium-Ion Batteries
,”
Int. J. Thermofluids
,
19
, p.
100373
.
14.
Shen
,
X.
,
Cai
,
T.
,
He
,
C.
,
Yang
,
Y.
, and
Chen
,
M.
,
2023
, “
Thermal Analysis of Modified Z-Shaped Air-Cooled Battery Thermal Management System for Electric Vehicles
,”
J. Energy Storage
,
58
, p.
106356
.
15.
Jaffal
,
H. M.
,
Mahmoud
,
N. S.
,
Imran
,
A. A.
, and
Hasan
,
A.
,
2023
, “
Performance Enhancement of a Novel Serpentine Channel Cooled Plate Used for Cooling of Li-Ion Battery Module
,”
Int. J. Therm. Sci.
,
184
, p.
107955
.
16.
Zare
,
P.
,
Perera
,
N.
,
Lahr
,
J.
, and
Hasan
,
R.
,
2024
, “
A Novel Thermal Management System for Cylindrical Lithium-Ion Batteries Using Internal-External Fin-Enhanced Phase Change Material
,”
Appl. Therm. Eng.
,
238
, p.
121985
.
17.
Salvi
,
S. S.
,
Surampudi
,
B.
,
Swarts
,
A.
,
Sarlashkar
,
J.
,
Smith
,
I.
,
Alger
,
T.
, and
Jain
,
A.
,
2024
, “
Experimental and Theoretical Analysis of Immersion Cooling of a Li-Ion Battery Module
,”
ASME J. Electrochem. Energy Convers. Storage
,
21
(
4
), p.
041001
.
18.
Prajapati
,
P.
, and
Deshpande
,
S.
,
2022
, “
Power Conversion From Spherical Tokamak Test Reactor With Helium-Cooled and Water-Cooled Blanket
,”
Fusion Eng. Des.
,
176
, p.
113024
.
19.
Saw
,
O. P.
,
Addepalli
,
S. K.
, and
Mallikarjuna
,
J.
,
2020
, “
Optimization of Intake Port and Pentroof Angle for Simultaneous Reduction of Fuel Consumption and Exhaust Emissions in a Gasoline Direct Injection Engine
,”
SAE Int. J. Eng.
,
13
(
3
), pp.
293
310
.
20.
Pang
,
L.
,
Ma
,
D.
,
Zhang
,
Y.
, and
Cao
,
X.
,
2023
, “
Multi-objective Optimization Design of a Plate–Fin Water Evaporator in a Low-Pressure Environment Based on the MO-SHERPA Algorithm: Conception Multi-cible Optimisée Pour évaporateur D'eau à Ailettes à Plaques Sous Basse Pression Basée sur L'algorithme Mo–Sherpa
,”
Int. J. Refrig.
,
153
, pp.
240
252
.
21.
Jia
,
Y.
,
Xia
,
G.
,
Li
,
Y.
,
Ma
,
D.
, and
Cai
,
B.
,
2018
, “
Heat Transfer and Fluid Flow Characteristics of Combined Microchannel With Cone-Shaped Micro Pin Fins
,”
Int. Commun. Heat Mass Transfer
,
92
, pp.
78
89
.
22.
Shen
,
H.
,
Wang
,
C.-C.
, and
Xie
,
G. J.
,
2018
, “
A Parametric Study on Thermal Performance of Microchannel Heat Sinks With Internally Vertical Bifurcations in Laminar Liquid Flow
,”
Int. J. Heat Mass Transfer
,
117
, pp.
487
497
.
23.
Tseng
,
P.-H.
,
Tsai
,
K.-T.
,
Chen
,
A.-L.
, and
Wang
,
C.-C.
,
2019
, “
Performance of Novel Liquid-Cooled Porous Heat Sink Via 3-D Laser Additive Manufacturing
,”
Int. J. Heat Mass Transfer
,
137
, pp.
558
564
.
24.
Chase
,
N.
,
Rademacher
,
M.
,
Goodman
,
E.
,
Averill
,
R.
, and
Sidhu
,
R.
,
2009
, “
A Benchmark Study of Multi-Objective Optimization Methods
,”
BMK
,
6
(
3021
), pp.
1
24
.
You do not currently have access to this content.