Abstract

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is spread, especially in closed environments, by airborne transmission. The study aims to assess the thermal inactivation of airborne SARS-CoV-2 in a 30 m3 test room as a function of outlet temperature, airflow rate, and operating time of an electric heater, then define a condition to ensure that all air in the room passes through the electric heater. Aerosolized SARS-CoV-2 was delivered to the test room at an ambient temperature of 20 °C and 40% humidity. Two electric heaters with different powers and airflow rates were operated respectively in the test room to compare their efficiencies in the inactivation of airborne SARS-CoV-2. The first and second electric heaters had power, airflow rates, and outlet temperatures of 1.5 kW, 44 m3/h, 220 °C, and 3 kW, 324 m3/h, and 150 °C, respectively. A fan drew the outside air into the heater. In the first experiment, a 1.5 kW electric heater was operated in the test room for 80 min. In the second experiment, a 3 kW electric heater was used in the test room for 75 min. Airborne SARS-CoV-2 in the test room was inactivated by 99.00% and 99.96% in the first and second experiments, respectively. A condition is defined to ensure that all the air in the room passes at least once through the electric heater fan.

References

1.
Tang
,
S.
,
Mao
,
Y.
,
Jones
,
R. M.
,
Tan
,
Q.
,
Ji
,
J. S.
,
Li
,
N.
,
Shen
,
J.
, et al
,
2020
, “
Aerosol Transmission of SARS-CoV-2? Evidence, Prevention and Control
,”
Environ. Int.
,
144
, pp.
1
10
.
2.
Morawska
,
L.
, and
Milton
,
D. K.
,
2020
, “
It Is Time to Address Airborne Transmission of Coronavirus Disease 2019 (COVID-19)
,”
Clin. Infect. Dis.
,
71
(
9
), pp.
2311
2313
.
3.
Jarvis
,
M. C.
,
2020
, “
Aerosol Transmission of SARS-CoV-2: Physical Principles and Implications
,”
Front. Public Health
,
8
, pp.
1
8
.
4.
Yao
,
M.
,
Zhang
,
L.
,
Ma
,
J.
, and
Zhou
,
L.
,
2020
, “
On Airborne Transmission and Control of SARS-Cov-2
,”
Sci. Total Environ.
,
731
, p.
139178
.
5.
Bazant
,
M. Z.
, and
Bush
,
J. W. M.
,
2021
, “
A Guideline to Limit Indoor Airborne Transmission of COVID-19
,”
Proc. Natl. Acad. Sci. U. S. A.
,
118
(
17
).
6.
Morawska
,
L.
,
Tang
,
J. W.
,
Bahnfleth
,
W.
,
Bluyssen
,
P. M.
,
Boerstra
,
A.
,
Buonanno
,
G.
,
Cao
,
J.
, et al
,
2020
, “
How Can Airborne Transmission of COVID-19 Indoors Be Minimised?
Environ. Int.
,
142
, pp.
1
7
.
7.
Darnell
,
M. E. R.
,
Subbarao
,
K.
,
Feinstone
,
S. M.
, and
Taylor
,
D. R.
,
2004
, “
Inactivation of the Coronavirus That Induces Severe Acute Respiratory Syndrome, SARS-CoV
,”
J. Virol. Methods
,
121
(
1
), pp.
85
91
.
8.
Storm
,
N.
,
McKay
,
L. G. A.
,
Downs
,
S. N.
,
Johnson
,
R. I.
,
Birru
,
D.
,
de Samber
,
M.
,
Willaert
,
W.
,
Cennini
,
G.
, and
Griffiths
,
A.
,
2020
, “
Rapid and Complete Inactivation of SARS-CoV-2 by Ultraviolet-C Irradiation
,”
Sci. Rep.
,
10
(
1
), pp.
1
5
.
9.
Buonanno
,
M.
,
Welch
,
D.
,
Shuryak
,
I.
, and
Brenner
,
D. J.
,
2020
, “
Far-UVC Light (222 Nm) Efficiently and Safely Inactivates Airborne Human Coronaviruses
,”
Sci. Rep.
,
10
(
1
), pp.
1
8
.
10.
Curtius
,
J.
,
Granzin
,
M.
, and
Schrod
,
J.
,
2021
, “
Testing Mobile Air Purifiers in a School Classroom: Reducing the Airborne Transmission Risk for SARS-CoV-2
,”
Aerosol Sci. Technol.
,
55
(
5
), pp.
586
599
.
11.
Ma
,
B.
,
Gundy
,
P. M.
,
Gerba
,
C. P.
,
Sobsey
,
M. D.
, and
Linden
,
K. G.
,
2021
, “
UV Inactivation of SARS-CoV-2 Across the UVC Spectrum: KrCl* Excimer, Mercury-Vapor, and Light-Emitting-Diode (LED) Sources
,”
Appl. Environ. Microbiol.
,
87
(
22
), p.
e01532-21
.
12.
Aboud
,
S. A.
,
Altemimi
,
A. B.
,
Al-hiiphy
,
A. R. S.
,
Yi-chen
,
L.
, and
Cacciola
,
F.
,
2019
, “
A Comprehensive Review on Infrared Heating
,”
Molecules
,
24
, pp.
1
20
.
13.
Bertrand
,
I.
,
Schijven
,
J. F.
,
Sánchez
,
G.
,
Wyn-Jones
,
P.
,
Ottoson
,
J.
,
Morin
,
T.
,
Muscillo
,
M.
, et al
,
2012
, “
The Impact of Temperature on the Inactivation of Enteric Viruses in Food and Water: A Review
,”
J. Appl. Microbiol.
,
112
(
6
), pp.
1059
1074
.
14.
Jung
,
J. H.
,
Lee
,
J. E.
,
Lee
,
C. H.
,
Kim
,
S. S.
, and
Lee
,
B. U.
,
2009
, “
Treatment of Fungal Bioaerosols by a High-Temperature, Short-Time Process in a Continuous-Flow System
,”
Appl. Environ. Microbiol.
,
75
(
9
), pp.
2742
2749
.
15.
Grinshpun
,
S. A.
,
Adhikari
,
A.
,
Li
,
C.
,
Yermakov
,
M.
,
Reponen
,
L.
,
Johansson
,
E.
, and
Trunov
,
M.
,
2010
, “
Inactivation of Aerosolized Viruses in Continuous Air Flow With Axial Heating
,”
Aerosol Sci. Technol.
,
44
(
11
), pp.
1042
1048
.
16.
Damit
,
B.
,
Wu
,
C. Y.
, and
Yao
,
M.
,
2013
, “
Ultra-High Temperature Infrared Disinfection of Bioaerosols and Relevant Mechanisms
,”
J. Aerosol Sci.
,
65
, pp.
88
100
.
17.
Ramanathan
,
K.
,
Antognini
,
D.
,
Combes
,
A.
,
Paden
,
M.
,
Zakhary
,
B.
,
Ogino
,
M.
,
Maclaren
,
G.
, and
Brodie
,
D.
,
2020
, “
Genomic Characterisation and Epidemiology of 2019 Novel Coronavirus: Implications for Virus Origins and Receptor Binding
,”
Lancet
,
395
(
22
), pp.
565
574
.
18.
Wang
,
Y.
,
Wu
,
X.
,
Wang
,
Y.
,
Li
,
B.
,
Zhou
,
H.
,
Yuan
,
G.
,
Fu
,
Y.
, and
Luo
,
Y.
,
2004
, “
Low Stability of Nucleocapsid Protein in SARS Virus
,”
Biochemistry
,
43
(
34
), pp.
11103
11108
.
19.
Yap
,
T. F.
,
Liu
,
Z.
,
Shveda
,
R. A.
, and
Preston
,
D. J.
,
2020
, “
A Predictive Model of the Temperature-Dependent Inactivation of Coronaviruses
,”
Appl. Phys. Lett.
,
117
(
6
), pp.
1
40
.
20.
Seifer
,
S.
, and
Elbaum
,
M.
,
2021
, “
Thermal Inactivation Scaling Applied for SARS-CoV-2
,”
Biophys. J.
,
120
(
6
), pp.
1054
1059
.
21.
Batéjat
,
C.
,
Grassin
,
Q.
,
Manuguerra
,
J.-C.
, and
Leclercq
,
I.
,
2021
, “
Heat Inactivation of the Severe Acute Respiratory Syndrome Coronavirus 2
,”
J. Biosaf. Biosecurity
,
3
(
1
), pp.
1
3
.
22.
Guillier
,
L.
,
Martin-Latil
,
S.
,
Chaix
,
E.
,
Thébault
,
A.
,
Pavio
,
N.
,
Le Poder
,
S.
,
Batéjat
,
C.
, et al.
,
2020
, “
Modeling the Inactivation of Viruses From the Coronaviridae Family in Response to Temperature and Relative Humidity in Suspensions or on Surfaces
,”
Appl. Environ. Microbiol.
,
86
(
18
), pp.
1
11
.
23.
Biryukov
,
J.
,
Boydston
,
J. A.
,
Dunning
,
R. A.
,
Yeager
,
J. J.
,
Wood
,
S.
,
Ferris
,
A.
,
Miller
,
D.
, et al
,
2021
, “
SARS-CoV-2 Is Rapidly Inactivated at High Temperature
,”
Environ. Chem. Lett.
,
19
(
2
), pp.
1773
1777
.
24.
Burton
,
J.
,
Love
,
H.
,
Richards
,
K.
,
Burton
,
C.
,
Summers
,
S.
,
Pitman
,
J.
,
Easterbrook
,
L.
, et al
,
2021
, “
The Effect of Heat-Treatment on SARS-CoV-2 Viability and Detection
,”
J. Virol. Methods
,
290
, pp.
1
5
.
25.
Pastorino
,
B.
,
Touret
,
F.
,
Gilles
,
M.
,
De Lamballerie
,
X.
,
Remi
,
N.
,
Émergents
,
V.
,
Inserm
,
I. R. D.
, and
Charrel
,
R. N.
,
2020
, “
Evaluation of Heating and Chemical Protocols for Inactivating SARS-CoV-2 (Méditerranée Infection), Marseille, France. Clinical Samples Collected in COVID-19 Patients Are Commonly Manipulated in BSL-2 Laboratories for Diagnostic Purpose. We Used the Fre
,” (iii), pp.
0
8
.
26.
Gamble
,
A.
,
Fischer
,
R. J.
,
Morris
,
D. H.
,
Yinda
,
C. K.
,
Munster
,
V. J.
, and
Lloyd-Smith
,
J. O.
,
2021
, “
Heat-Treated Virus Inactivation Rate Depends Strongly on Treatment Procedure: Illustration With SARS-CoV-2
,”
Appl. Environ. Microbiol.
,
87
(
19
), pp.
1
9
.
27.
Jiang
,
Y.
,
Zhang
,
H.
,
Wippold
,
J. A.
,
Gupta
,
J.
,
Dai
,
J.
,
de Figueiredo
,
P.
,
Leibowitz
,
J. L.
, and
Han
,
A.
,
2021
, “
Sub-Second Heat Inactivation of Coronavirus Using a Betacoronavirus Model
,”
Biotechnol. Bioeng.
,
118
(
5
), pp.
2067
2075
.
28.
Hessling
,
M.
,
Hoenes
,
K.
, and
Lingenfelder
,
C.
,
2020
, “
Selection of Parameters for Thermal Coronavirus Inactivation—A Data-Based Recommendation
,”
GMS Hyg. Infect. Control
,
15
, pp.
1
7
.
29.
Wang
,
X.
,
Sun
,
S.
,
Zhang
,
B.
, and
Han
,
J.
,
2021
, “
Solar Heating to Inactivate Thermal-Sensitive Pathogenic Microorganisms in Vehicles: Application to COVID-19
,”
Environ. Chem. Lett.
,
19
(
2
), pp.
1765
1772
.
30.
Yu
,
L.
,
Peel
,
G. K.
,
Cheema
,
F. H.
,
Lawrence
,
W. S.
,
Bukreyeva
,
N.
,
Jinks
,
C. W.
,
Peel
,
J. E.
, et al
,
2020
, “
Catching and Killing of Airborne SARS-CoV-2 to Control Spread of COVID-19 by a Heated Air Disinfection System
,”
Mater. Today Phys.
,
15
, pp.
1
5
.
31.
Canpolat
,
M.
,
Bozkurt
,
S.
,
Şakalar
,
Ç
,
Çoban
,
A. Y.
,
Karaçaylı
,
D.
, and
Toker
,
E.
,
2022
, “
Rapid Thermal Inactivation of Aerosolized SARS-CoV-2
,”
J. Virol. Methods
,
301
, pp.
1
5
.
32.
Abraham
,
J. P.
,
Plourde
,
B. D.
, and
Cheng
,
L.
,
2020
, “
Using Heat to Kill SARS-CoV-2
,”
Rev. Med. Virol.
,
30
(
5
), pp.
8
10
.
33.
Kampf
,
G.
,
Voss
,
A.
, and
Scheithauer
,
S.
,
2020
, “
Inactivation of Coronaviruses by Heat
,”
J. Hosp. Infect.
,
105
(
2
), pp.
348
349
.
34.
Şakalar
,
Ç
, and
Ertürk
,
M.
,
2023
, “
Inactivation of Airborne SARS-CoV-2 by Thyme Volatile Oil Vapor Phase
,”
J. Virol. Methods
,
312
, pp.
1
5
.
35.
Hubert
,
J. J.
,
1984
, “
Spearman-Karber Method
,”
Bioassay, 2nd Edition, Kendall/Hunt Pub. Co., Dubuque, Lowa
, pp.
65
66
.
You do not currently have access to this content.