Abstract

As electronic devices generate heat while operating, thermal management is important in view of the reliability and lifespan of the device. Much research is focused on the improvement of charging time for continuous operations of the device. Moreover, for intermittent operation of devices, the reduction in the discharging time is also as essential as the improvement in the charging time. Therefore, the objective of the study is to develop a strategy that improves charging time and reduces discharging time. This paper reports the experimental heat transfer results of a novel phase change material (PCM)-based heat sink coupled with a heat pipe under different orientations. The experiments are conducted at a constant fill ratio of 99% on several heat sink configurations, such as a heat sink (i) with the stem at the center, (ii) with four fins, and (iii) with three longitudinal fins coupled with a heat pipe. The aluminum-made heat sink having an outer diameter of 58 mm and a height of 55 mm with a wall thickness of 4 mm, is used for all the heat sink configurations. The heat pipe with an evaporator length of 60 mm and a condenser length of 40 mm is attached at the center of a three-fin heat sink configuration. Experiments are performed on different heat sinks with n-Eicosane as PCM at different orientations of 0 deg, 45 deg, 90 deg, 135 deg, and 180 deg at various power levels. The heat input is varied between 6 W and 12 W. The condenser section of the heat pipe is cooled under two different conditions, i.e., (i) natural convection and (ii) forced convection. The results show that the finned heat sink coupled with a heat pipe (FHSHP) gives the best charging and discharging performance compared to other configurations. Moreover, it is observed that the performance of an FHSHP is orientation-dependent. Furthermore, the overall effectiveness of FHSHP is high when the condenser section of the heat pipe is cooled using forced convection rather than natural convection.

References

1.
Moore
,
G. E.
,
1998
, “
Cramming More Components Onto Integrated Circuits
,”
Proc. IEEE
,
86
(
1
), pp.
82
85
.
2.
Tan
,
F. L.
, and
Fok
,
S. C.
,
2012
, “
Numerical Investigation of Phase Change Material-Based Heat Storage Unit on Cooling of Mobile Phone
,”
Heat Transfer Eng.
,
33
(
6
), pp.
494
504
.
3.
Jankowski
,
N. R.
, and
Patrick McCluskey
,
F.
,
2014
, “
A Review of Phase Change Materials for Vehicle Component Thermal Buffering
,”
Appl. Energy
,
113
, pp.
1525
1561
.
4.
Alawadhi
,
E. M.
, and
Amon
,
C. H.
,
2003
, “
PCM Thermal Control Unit for Portable Electronic Devices: Experimental and Numerical Studies
,”
IEEE Trans. Comp. Packag. Manuf.
,
26
(
1
), pp.
116
125
.
5.
Sponagle
,
B.
,
Groulx
,
D.
, and
White
,
M. A.
,
2019
, “
Impact of Phase Change Material Transition Temperature on the Performance of Latent Heat Storage Thermal Control in Tablet Computers
,”
ASME J. Heat Transfer-Trans. ASME
,
141
(
12
), p.
122801
.
6.
Colla
,
L.
,
Ercole
,
D.
,
Fedele
,
L.
,
Mancin
,
S.
,
Manca
,
O.
, and
Bobbo
,
S.
,
2017
, “
Nano-Phase Change Materials for Electronics Cooling Applications
,”
ASME J. Heat Transfer-Trans. ASME
,
139
(
5
), p.
052406
.
7.
Ge
,
H.
, and
Liu
,
J.
,
2013
, “
Keeping Smartphones Cool With Gallium Phase Change Material
,”
ASME J. Heat Transfer-Trans. ASME
,
135
(
5
), p.
054503
.
8.
Zhang
,
D.-X.
,
Zhu
,
C.-Y.
,
Li
,
K.
,
Duan
,
X.-Y.
,
Gong
,
L.
,
Ding
,
B.
, and
Xu
,
M.-H.
,
2023
, “
Design and the Transient Thermal Control Performance Analysis of a Novel PCM-Based Active-Passive Cooling Heat Sink
,”
Appl. Therm. Eng.
,
220
, p.
119525
.
9.
Zhao
,
L.
,
Xing
,
Y.
,
Wang
,
Z.
, and
Liu
,
X.
,
2017
, “
The Passive Thermal Management System for Electronic Device Using Low-Melting-Point Alloy as Phase Change Material
,”
Appl. Therm. Eng.
,
125
, pp.
317
327
.
10.
Al-Omari
,
S. A. B.
,
Qureshi
,
Z. A.
,
Mahmoud
,
F.
, and
Elnajjar
,
E.
,
2022
, “
Thermal Management Characteristics of a Counter-Intuitive Finned Heat Sink Incorporating Detached Fins Impregnated With a High Thermal Conductivity-Low Melting Point PCM
,”
Int. J. Therm. Sci.
,
175
, p.
107396
.
11.
Mithal
,
P.
,
1996
, “
Design of Experimental Based Evaluation of Thermal Performance of a Flichip Electronic Assembly
,”
ASME EEP Proc.
,
18
, pp.
109
115
.
12.
Tilley
,
A. R.
,
2001
,
The Measure of Man and Woman: Human Factors in Design
,
John Wiley & Sons
,
New York
.
13.
Baby
,
R.
, and
Balaji
,
C.
,
2012
, “
Experimental Investigations on Phase Change Material Based Finned Heat Sinks for Electronic Equipment Cooling
,”
Int. J. Heat Mass Transfer
,
55
(
5–6
), pp.
1642
1649
.
14.
Baby
,
R.
, and
Balaji
,
C.
,
2013
, “
Thermal Optimization of PCM Based Pin Fin Heat Sinks: An Experimental Study
,”
Appl. Therm. Eng.
,
54
(
1
), pp.
65
77
.
15.
Arshad
,
A.
,
Ali
,
H. M.
,
Yan
,
W. M.
,
Hussein
,
A. K.
, and
Ahmadlouydarab
,
M.
,
2018
, “
An Experimental Study of Enhanced Heat Sinks for Thermal Management Using n-Eicosane as Phase Change Material
,”
Appl. Therm. Eng.
,
132
, pp.
52
66
.
16.
Arshad
,
A.
,
Ali
,
H. M.
,
Khushnood
,
S.
, and
Jabbal
,
M.
,
2018
, “
Experimental Investigation of PCM Based Round Pin-Fin Heat Sinks for Thermal Management of Electronics: Effect of Pin-Fin Diameter
,”
Int. J. Heat Mass Transfer
,
117
, pp.
861
872
.
17.
Kumar
,
P. M.
,
Saminathan
,
R.
,
Sumayli
,
A.
,
Mittal
,
M.
,
Abishek
,
A. S.
,
Kumaar
,
A. A.
,
Reddy
,
T. D.
, and
Rinawa
,
M. L.
,
2022
, “
Experimental Analysis of a Heat Sink for Electronic Chipset Cooling Using a Nano Improved PCM (NIPCM)
,”
Mater. Today: Proc.
,
56
, pp.
1527
1531
.
18.
Baby
,
R.
, and
Balaji
,
C.
,
2013
, “
Experimental Investigations on Thermal Performance Enhancement and Effect of Orientation on Porous Matrix Filled PCM Based Heat Sink
,”
Int. Commun. Heat Mass Transfer
,
46
, pp.
27
30
.
19.
Saha
,
S. K.
,
Srinivasan
,
K.
, and
Dutta
,
P.
,
2008
, “
Studies on Optimum Distribution of Fins in Heat Sinks Filled With Phase Change Materials
,”
ASME J. Heat Transfer-Trans. ASME
,
130
(
3
), p.
034505
.
20.
Debich
,
B.
,
El Hami
,
A.
,
Yaich
,
A.
,
Gafsi
,
W.
,
Walha
,
L.
, and
Haddar
,
M.
,
2020
, “
Design Optimization of PCM-Based Finned Heat Sinks for Mechatronic Components: A Numerical Investigation and Parametric Study
,”
J. Energy Storage
,
32
, p.
101960
.
21.
Hosseinizadeh
,
S. F.
,
Tan
,
F. L.
, and
Moosania
,
S. M.
,
2011
, “
Experimental and Numerical Studies on Performance of PCM-Based Heat Sink With Different Configurations of Internal Fins
,”
Appl. Therm. Eng.
,
31
(
17–18
), pp.
3827
3838
.
22.
Kumar Marri
,
G.
, and
Balaji
,
C.
,
2021
, “
Experimental and Numerical Investigations on a Phase Change Material Based Heat Sink With Symbiotically Joined Heat Pipe
,”
Heat Transfer Eng.
,
42
(
1
), pp.
23
40
.
23.
Shatikian
,
V.
,
Ziskind
,
G.
, and
Letan
,
R.
,
2005
, “
Numerical Investigation of a PCM-Based Heat Sink With Internal Fins
,”
Int. J. Heat Mass Transfer
,
48
(
17
), pp.
3689
3706
.
24.
Kamkari
,
B.
, and
Groulx
,
D.
,
2018
, “
Experimental Investigation of Melting Behaviour of Phase Change Material in Finned Rectangular Enclosures Under Different Inclination Angles
,”
Exp. Therm. Fluid. Sci.
,
97
, pp.
94
108
.
25.
Yazici
,
M. Y.
,
Avci
,
M.
, and
Aydin
,
O.
,
2019
, “
Combined Effects of Inclination Angle and Fin Number on Thermal Performance of a PCM-Based Heat Sink
,”
Appl. Therm. Eng.
,
159
, p.
113956
.
26.
Sharifi
,
N.
,
Robak
,
C. W.
,
Bergman
,
T. L.
, and
Faghri
,
A.
,
2013
, “
Three-Dimensional PCM Melting in a Vertical Cylindrical Enclosure Including the Effects of Tilting
,”
Int. J. Heat Mass Transfer
,
65
, pp.
798
806
.
27.
Allen
,
M. J.
,
Sharifi
,
N.
,
Faghri
,
A.
, and
Bergman
,
T. L.
,
2015
, “
Effect of Inclination Angle During Melting and Solidification of a Phase Change Material Using a Combined Heat Pipe-Metal Foam or Foil Configuration
,”
Int. J. Heat Mass Transfer
,
80
, pp.
767
780
.
28.
Viskanta
,
R.
, and
Hale
,
N. W.
, Jr
,
1980
, “
Solid-Liquid Phase-Change Heat Transfer and Interface Motion in Materials Cooled or Heated From Above or Below
,”
Int. J. Heat Mass Transfer
,
23
(
3
), pp.
283
292
.
29.
Moffat
,
R. J.
,
1988
, “
Describing the Uncertainties in Experimental Results
,”
Exp. Therm. Fluid. Sci.
,
1
(
1
), pp.
3
17
.
30.
Churchill
,
S. W.
, and
Chu
,
H. H.
,
1975
, “
Correlating Equations for Laminar and Turbulent Free Convection From a Horizontal Cylinder
,”
Int. J. Heat Mass Transfer
,
18
(
9
), pp.
1049
1053
.
31.
Churchill
,
S. W.
, and
Bernstein
,
M.
,
1977
, “
A Correlating Equation for Forced Convection From Gases and Liquids to a Circular Cylinder in Crossflow
,”
ASME J. Heat Transfer-Trans. ASME
,
300–306
(
2
), pp.
300
306
.
You do not currently have access to this content.