Abstract

A diffusion absorption heat transformer (AHT) is very potential to improve energy utilization efficiency and reduce carbon emission, because it can be totally driven by waste heat without electricity consumption. On the base of a simulation model, the cycle performance of a diffusion absorption heat transformer using HCOOK-H2O-R134a-TEGDME and LiBr-H2O-R134a-TEGDME is compared under specified temperatures of Generator A, Generator B, evaporator, condenser, low-temperature (LT) absorber, and high-temperature (HT) absorber. The influences of six temperatures on cycle performance are assessed and coefficient of performance (COP) is found more sensitive to the temperatures of Generator B and high-temperature absorber. High COP corresponds to small diffusion gas supply ratio and small proportion of the heat input to Generator A in the total thermal power input. The employment of HCOOK instead of LiBr is beneficial to increasing COP in optimized conditions. In the design temperature conditions, COP can be increased from 0.170 to 0.178 in the system using HCOOK instead of LiBr. Meanwhile, diffusion gas supply ratio, proportion of the heat input to Generator A, and pumping ratio (PR) of Lifting Tube B can be decreased to 0.368, 0.022, and 0.098, respectively. The diffusion absorption heat transformer will provide a new way to lift the temperature of low-grade heat for more availability without electricity input and improve the energy utilization efficiency.

References

1.
Wu
,
W.
,
Wang
,
B. L.
,
Shi
,
W. X.
, and
Li
,
X. T.
,
2014
, “
Absorption Heating Technologies: A Review and Perspective
,”
Appl. Energy
,
130
, pp.
51
71
.
2.
Salata
,
F.
, and
Coppi
,
M.
,
2014
, “
A First Approach Study on the Desalination of Sea Water Using Heat Transformers Powered by Solar Ponds
,”
Appl. Energy
,
136
, pp.
611
618
.
3.
Oluleye
,
G.
,
Smith
,
R.
, and
Jobson
,
M.
,
2016
, “
Modelling and Screening Heat Pump Options for the Exploitation of Low Grade Waste Heat in Process Sites
,”
Appl. Energy
,
169
, pp.
267
286
.
4.
Chen
,
J. C.
,
1997
, “
Equivalent Combined Cycle of an Endoreversible Absorption Heat Transformer and Optimal Analysis of Primary Performance Parameters
,”
Energy Convers. Manage.
,
38
(
7
), pp.
705
712
.
5.
Jain
,
V.
, and
Sachdeva
,
G.
,
2017
, “
Energy, Exergy, Economic (3E) Analyses and Multi-Objective Optimization of Vapor Absorption Heat Transformer Using NSGA-II Technique
,”
Energy Convers. Manage.
,
148
, pp.
1096
1113
.
6.
Shi
,
L.
,
Yin
,
J.
,
Wang
,
X.
, and
Zhu
,
M. S.
,
2001
, “
Study on a New Ejection-Absorption Heat Transformer
,”
Appl. Energy
,
68
(
2
), pp.
161
171
.
7.
Sözen
,
A.
,
Arcaklioğlu
,
E.
,
Özalp
,
M.
, and
Yücesu
,
S.
,
2005
, “
Performance Parameters of an Ejector-Absorption Heat Transformer
,”
Appl. Energy
,
80
(
3
), pp.
273
289
.
8.
Lin
,
S. R.
,
Chen
,
G. M.
,
Hong
,
D. L.
,
Yan
,
X. N.
, and
Lin
,
W.
,
2012
, “
Theoretical Analysis of an Ejection H2O-LiBr Absorption Heat Transformer
,”
Cryogenics
,
185
(
1
), pp.
20
24
. CNKI:SUN:DWGC.0.2012-01-008
9.
Zhao
,
Z. C.
,
Zhang
,
X. D.
, and
Ma
,
X. H.
,
2005
, “
Thermodynamic Performance of a Double-Effect Absorption Heat-Transformer Using TFE/TEGDME as the Working Fluid
,”
Appl. Energy
,
82
(
2
), pp.
107
116
.
10.
Gomri
,
R.
,
2010
, “
Thermal Seawater Desalination: Possibilities of Using Single Effect and Double Effect Absorption Heat Transformer Systems
,”
Desalination
,
253
(
1–3
), pp.
112
118
.
11.
Ji
,
J.
, and
Ishida
,
M.
,
1999
, “
Behavior of a Two-Stage Absorption Heat Transformer Combining Latent and Sensible Heat Exchange Modes
,”
Appl. Energy
,
62
(
4
), pp.
267
281
.
12.
Donnellan
,
P.
,
Cronin
,
K.
, and
Byrne
,
E.
,
2015
, “
Recycling Waste Heat Energy Using Vapour Absorption Heat Transformers: A Review
,”
Renewable Sustainable Energy Rev.
,
42
, pp.
1290
1304
.
13.
Lubis
,
A.
,
Giannetti
,
N.
,
Yamaguchi
,
S.
,
Saito
,
K.
, and
Inoue
,
N.
,
2017
, “
Experimental Performance of a Double-Lift Absorption Heat Transformer for Manufacturing-Process Steam Generation
,”
Energy Convers. Manage.
,
148
, pp.
267
278
.
14.
Rivera
,
W.
,
Huicochea
,
A.
,
Romero
,
R. J.
, and
Lozano
,
A.
,
2018
, “
Experimental Assessment of Double-Absorption Heat Transformer Operating With H2O-LiBr
.”
Appl. Therm. Eng.
,
132
, pp.
432
480
.
15.
Zhao
,
Z. C.
,
Zhou
,
F. W.
,
Zhang
,
X. D.
, and
Li
,
S. P.
,
2003
, “
The Thermodynamic Performance of a New Solution Cycle in Double Absorption Heat Transformer Using Water/Lithium Bromide as the Working Fluids
,”
Int. J. Refrig.
,
26
(
3
), pp.
315
320
.
16.
Horuz
,
I.
, and
Kurt
,
B.
,
2009
, “
Single Stage and Double Absorption Heat Transformers in an Industrial Application
,”
Int. J. Energy Res.
,
33
(
9
), pp.
787
798
.
17.
Saito
,
K.
,
Inoue
,
N.
,
Nakagawa
,
Y.
,
Fukusumi
,
Y.
,
Yamada
,
H.
, and
Irie
,
T.
,
2015
, “
Experimental and Numerical Performance Evaluation of Double-Lift Absorption Heat Transformer
,”
Sci. Technol. Built Environ.
,
21
(
3
), pp.
312
322
.
18.
Wang
,
H. Z.
,
Li
,
H. S.
,
Bu
,
X. B.
, and
Wang
,
L. B.
,
2017
, “
Effects of the Generator and Evaporator Temperature Differences on a Double Absorption Heat Transformer-Different Control Strategies on Utilizing Heat Sources
,”
Energy Convers. Manage.
,
138
, pp.
12
21
.
19.
Mahmoudi
,
S. M. S.
,
Salehi
,
S.
, and
Yari
,
M.
,
2017
, “
Three-Objective Optimization of a Novel Triple-Effect Absorption Heat Transformer Combined With a Water Desalination System
,”
Energy Convers. Manage.
,
138
, pp.
131
147
.
20.
Donnellan
,
P.
,
Cronin
,
K.
,
Acevedo
,
Y.
, and
Byrne
,
E.
,
2014
, “
Economic Evaluation of an Industrial High Temperature Lift Heat Transformer
,”
Energy
,
73
, pp.
581
591
.
21.
Zhang
,
X. D.
,
Hu
,
D. P.
, and
Li
,
Z. Y.
,
2014
, “
Performance Analysis on a New Multi-Effect Distillation Combined With an Open Absorption Heat Transformer Driven by Waste Heat
,”
Appl. Therm. Eng.
,
62
(
1
), pp.
239
244
.
22.
Hamidi
,
A.
,
Parham
,
K.
,
Atikol
,
U.
, and
Shahbaz
,
A. H.
,
2015
, “
A Parametric Performance Analysis of Single and Multi-Effect Distillation Systems Integrated With Open-Cycle Absorption Heat Transformers
,”
Desalination
,
371
, pp.
37
45
.
23.
Liu
,
F.
,
Sui
,
J.
,
Liu
,
T. X.
, and
Jin
,
H. G.
,
2017
, “
Performance Investigation of a Combined Heat Pump Transformer Operating With Water/Lithium Bromide
,”
Energy Convers. Manage.
,
140
, pp.
295
306
.
24.
Yang
,
S.
,
Yang
,
S. Y.
,
Wang
,
Y. F.
, and
Qian
,
Y.
,
2017
, “
Low Grade Waste Heat Recovery With a Novel Cascade Absorption Heat Transformer
,”
Energy
,
130
, pp.
461
472
.
25.
Wang
,
Y. L.
,
Liu
,
Y. G.
,
Liu
,
X. B.
,
Zhang
,
W. X.
,
Cui
,
P. Z.
,
Yu
,
M. X.
,
Liu
,
Z. Q.
,
Zhu
,
Z. Y.
, and
Yang
,
S.
,
2020
, “
Advanced Exergy and Exergoeconomic Analyses of a Cascade Absorption Heat Transformer for the Recovery of Low Grade Waste Heat
,”
Energy Convers. Manage.
,
205
, p.
112392
.
26.
Yu
,
M. X.
,
Chen
,
Z. R.
,
Yao
,
D.
,
Zhao
,
F.
,
Pan
,
X. S.
,
Liu
,
X. B.
,
Cui
,
P. Z.
,
Zhu
,
Z. Y.
, and
Wang
,
Y. L.
,
2020
, “
Energy, Exergy, Economy Analysis and Multi-Objective Optimization of a Novel Cascade Absorption Heat Transformer Driven by Low-Level Waste Heat
,”
Energy Convers. Manage.
,
221
, p.
113162
.
27.
Balderas-Sánchez
,
I. N.
,
Rivera
,
W.
,
Jiménez-García
,
J. C.
,
2019
, “
Thermodynamic Analysis of a Novel Absorption Heat Transformer
,”
Appl. Therm. Eng.
,
162
, p.
114268
.
28.
Hernández-Magallanes
,
J. A.
,
Tututi-Avila
,
S.
,
Cerdán-Pasarán
,
A.
,
Morales
,
L. I.
, and
Rivera
,
W.
,
2021
, “
Thermodynamic Simulation of an Absorption Heat Pump-Transformer-Power Cycle Operating With the Ammonia-Water Mixture
,”
Appl. Therm. Eng.
,
182
, p.
116174
.
29.
Eriksson
,
K.
, and
Jernqvist
,
Å.
,
1989
, “
Heat Transformer With Self-Circulation: Design and Preliminary Operational Data
,”
Int. J. Refrig.
,
12
(
1
), pp.
15
20
.
30.
Abrahamsson
,
K.
,
Gidner
,
A.
, and
Jernqvist
,
Å.
,
1995
, “
Design and Experimental Performance Evaluation of an Absorption Heat Transformer With Self-Circulation
,”
Heat Recovery Syst. CHP
,
15
(
3
), pp.
257
272
.
31.
von Platen
,
B. C.
, and
Munters
,
C. G.
,
1928
, “Refrigerator,” U.S. Patent 1685764.
32.
Wang
,
Q.
,
Gong
,
L.
,
Chen
,
G. M.
,
Hao
,
N.
, and
Sun
,
S. F.
,
2012
, “
A Diffusion Absorption Transformer With Two Bubble Pumps
,” Chinese Patent 201110046842.7.
33.
Wang
,
Q.
,
Liu
,
Y. L.
,
Luo
,
J. L.
,
Wang
,
S. K.
,
Tang
,
J. X.
,
Xu
,
X. G.
, and
Chen
,
G. M.
,
2020
, “
Theoretical Investigations on the Cycle Performance of a Single-Pressure Diffusion Absorption Heat Transformer With LiBr-H2O-R134a-TEGDME
,”
J. Cleaner Prod.
,
277
, p.
123303
.
34.
Riffat
,
S. B.
,
James
,
S. E.
, and
Wong
,
C. W.
,
1998
, “
Experimental Analysis of the Absorption and Desorption Rates of HCOOK/H2O and LiBr/H2O
,”
Int. J. Energy Res.
,
22
(
12
), pp.
1099
1103
.
35.
Qiu
,
G. Q.
, and
Riffat
,
S. B.
,
2010
, “
Experimental Investigation on a Novel Air Dehumidifier Using Liquid Desiccant
,”
Int. J. Green Energy
,
7
(
2
), pp.
174
180
.
36.
Longo
,
G. A.
, and
Gasparella
,
A.
,
2005
, “
Experimental and Theoretical Analysis of Heat and Mass Transfer in a Packed Column Dehumidifier/Regenerator With Liquid Desiccant
,”
Int. J. Heat Mass Transfer
,
48
(
25–26
), pp.
5240
5254
.
37.
Longo
,
G. A.
, and
Gasparella
,
A.
,
2015
, “
Three Years Experimental Comparative Analysis of a Desiccant Based Air Conditioning System for a Flower Greenhouse: Assessment of Different Desiccants
,”
Appl. Therm. Eng.
,
78
, pp.
584
590
.
38.
Wang
,
S. K.
,
Liu
,
Y. L.
,
Chen
,
Y.
,
Wang
,
Q.
,
Xu
,
X. G.
,
Chen
,
G. M.
, and
Deng
,
S. M.
,
2019
, “
Experimental Investigations on the Temperature Lift Performance of a Novel Diffusion Absorption Heat Transformer
,”
Energy
,
170
, pp.
906
914
.
39.
Wang
,
Q.
,
Liu
,
Y. L.
,
Luo
,
J. L.
,
Wang
,
S. K.
,
He
,
W.
,
Zhang
,
S. Z.
,
Chen
,
G. M.
,
2021
, “
Experimental Research on the Performance of a Gas Lift Bubble Pump Based on a Diffusion Generation Process
,”
Appl. Therm. Eng.
,
182
, p.
116060
.
40.
Patek
,
J.
, and
Klomfar
,
J.
,
2006
, “
A Computationally Effective Formulation of the Thermodynamic Properties of H2O-LiBr From 273 to 500 K Over Full Composition Range
,”
Int. J. Refrig.
,
29
(
4
), pp.
566
578
.
41.
Zhang
,
S. Z.
,
Luo
,
J. L.
,
Zheng
,
R. R.
,
Wang
,
X. H.
,
Chen
,
G. M.
, and
Wang
,
Q.
,
2020
, “
Vapor Pressure of Aqueous HCOOK Solution as Working Fluids of an Absorption Heat Transformer at High Temperature
,”
J. Chem. Eng. Data
,
65
(
2
), pp.
561
566
.
You do not currently have access to this content.