Abstract

Fan-shaped hole is a typical shaped hole frequently used in gas turbine film cooling, which may operate in a complex vortical flow environment of turbine blade rows. It is critical to understand the destructive mechanism of the film cooling by near-wall vortex on the endwall surface. A vortex generator (VG) was installed in front of a discrete fan-shaped hole to produce a vortical environment on a flat plate. Heat transfer effects were experimentally studied for mainstream velocities of 20 m/s by measuring the adiabatic film cooling effectiveness at blowing ratios M = 0.5 to 2.5. Fluid dynamics effects of vortical upwash and downwash movements were numerically analyzed. Results show that near-wall streamwise vortex destroys the film flow and intensifies the mixing of hot gas and coolant flow, which leads to the deterioration of film cooling performance. Film coverage area varies remarkably with respect to the positions of streamwise vortex. An efficient blowing ratio has a strong ability to mitigate the influence of near-wall vortex. At M = 2.5, streamwise vortex can restrain liftoff tendency of coolant jet and retard the decrease of film cooling effects.

References

1.
Goldstein
,
R. J.
,
Eckert
,
E.
, and
Burggraf
,
F.
,
1974
, “
Effects of Hole Geometry and Density on Three-Dimensional Film Cooling
,”
Int. J. Heat Mass Transfer
,
17
(
5
), pp.
595
607
.
2.
Bunker
,
R. S.
,
2005
, “
A Review of Shaped Hole Turbine Film-Cooling Technology
,”
ASME J. Heat Transfer-Trans. ASME
,
127
(
4
), pp.
441
453
.
3.
Oliver
,
T. A.
,
Bogard
,
D. G.
, and
Moser
,
R. D.
,
2019
, “
Large Eddy Simulation of Compressible, Shaped-Hole Film Cooling
,”
Int. J. Heat Mass Transfer
,
140
, pp.
498
517
.
4.
Vinton
,
K. R.
,
Watson
,
T. B.
,
Wright
,
L. M.
,
Crites
,
D. C.
,
Morris
,
M. C.
, and
Riahi
,
A.
,
2017
, “
Combined Effects of Freestream Pressure Gradient and Density Ratio on the Film Cooling Effectiveness of Round and Shaped Holes on a Flat Plate
,”
ASME J. Turbomach.
,
139
(
4
), p.
041003
.
5.
Stratton
,
Z. T.
, and
Shih
,
I. P.
,
2018
, “
Effects of Density and Blowing Ratios on the Turbulent Structure and Effectiveness of Film-Cooling
,”
ASME J. Turbomach.
,
140
(
10
), p.
101007
.
6.
Johnson
,
B.
,
Tian
,
W.
,
Zhang
,
K.
, and
Hu
,
H.
,
2014
, “
An Experimental Study of Density Ratio Effects on the Film Cooling Injection From Discrete Holes by Using PIV and PSP Techniques
,”
Int. J. Heat Mass Transfer
,
76
, pp.
337
349
.
7.
Hayes
,
S. A.
,
Nix
,
A. C.
,
Nestor
,
C. M.
,
Billups
,
D. T.
, and
Haught
,
S. M.
,
2017
, “
Experimental Investigation of the Influence of Freestream Turbulence on an Anti-Vortex Film Cooling Hole
,”
Exp. Therm. Fluid Sci.
,
81
, pp.
314
326
.
8.
Fu
,
W. S.
,
Chao
,
W. S.
,
Tsubokura
,
M.
,
Li
,
C. G.
, and
Wang
,
W. H.
,
2018
, “
Investigation of Boundary Layer Thickness and Turbulence Intensity on Film Cooling With a Fan-Shaped Hole by Direct Numerical Simulation
,”
Int. J. Commun. Heat Mass Transfer
,
96
, pp.
12
19
.
9.
Lee
,
K. D.
, and
Kim
,
K. Y.
,
2010
, “
Surrogate Based Optimization of a Laidback Fan-Shaped Hole for Film-Cooling
,”
Int. J. Heat Fluid Flow
,
32
(
1
), pp.
226
238
.
10.
Li
,
M. C.
,
He
,
Y. G.
,
Li
,
R. D.
, and
Yang
,
T. H.
,
2021
, “
Effects of Injection Angles and Aperture Ratios on Film Cooling Performance of Sister Holes
,”
J. Therm. Sci.
,
30
(
02
), pp.
716
728
.
11.
Ligrani
,
P. M.
,
Potts
,
G.
, and
Fatemi
,
A.
,
2017
, “
Endwall Aerodynamic Losses From Turbine Components Within Gas Turbine Engines
,”
Propul. Power Res.
,
6
(
1
), pp.
1
14
.
12.
Ligrani
,
P. M.
,
Ortiz
,
A.
,
Joseph
,
S. L.
, and
Evans
,
D. L.
,
1989
, “
Effects of Embedded Vortices on Film-Cooled Turbulent Boundary Layers
,”
ASME J. Turbomach.
,
111
(
1
), pp.
71
77
.
13.
Cheng
,
F.
,
Zhang
,
J.
,
Tian
,
X.
,
Zhang
,
J.
, and
Zhang
,
Y.
,
2020
, “
Turbine Vane Endwall Partition Film Cooling Based on the Passage Vortex Core Line
,”
Int. J. Heat Mass Transfer
,
162
, p.
120354
.
14.
Kim
,
G. M.
,
Lee
,
S. I.
,
Jin
,
Y. J.
,
Kwak
,
J. S.
, and
Choi
,
J. U.
,
2021
, “
An Experimental Study of the Leakage Flow Effect on the Film Cooling Effectiveness of a Gas Turbine Shroud
,”
ASME J. Therm. Sci. Eng. Appl.
,
13
(
6
), p.
061007
.
15.
Tao
,
Z.
,
Wu
,
X. L.
,
Zhu
,
P. Y.
,
Yao
,
Y. J.
,
Song
,
L. M.
, and
Li
,
J.
,
2019
, “
Research on Effects of Nonaxisymmetric Endwall Contouring on Blade Endwall Aerothermal Performance
,”
J. Propul. Tech.
,
40
(
08
), pp.
1734
1742
.
16.
Mensch
,
A.
, and
Thole
,
K. A.
,
2016
, “
Overall Effectiveness and Flowfield Measurements for an Endwall With Nonaxisymmetric Contouring
,”
ASME J. Turbomach.
,
138
(
3
), p.
031007
.
17.
Satta
,
F.
, and
Tanda
,
G.
,
2015
, “
Effect of Discrete-Hole Arrangement on Film-Cooling Effectiveness for the Endwall of a Turbine Blade Cascade
,”
Appl. Therm. Eng.
,
91
, pp.
507
514
.
18.
Su
,
H.
,
Pu
,
J.
,
Wang
,
W.
,
Wang
,
J. H.
, and
Luan
,
Y. X.
,
2018
, “
A Discrete Film-Hole Arrangement to Reduce Endwall Surface Temperature
,”
J. Eng. Thermophys.
,
39
(
12
), pp.
2620
2626
. http://dx.doi.org/CNKI:SUN:GCRB.0.2018-12-006
19.
Ligrani
,
P. M.
, and
Williams
,
W.
,
1990
, “
Effects of an Embedded Vortex on Injectant From a Single Film-Cooling Hole in a Turbulent Boundary Layer
,”
ASME J. Turbomach.
,
112
(
3
), pp.
428
436
.
20.
Fiebig
,
M.
,
1998
, “
Vortices, Generators and Heat Transfer
,”
Chem. Eng. Res. Des.
,
76
(
2
), pp.
108
123
.
21.
Chung
,
H. K.
,
Na
,
Y. S.
, and
Lee
,
J. S.
,
2009
, “
The Effect of Embedded Vortices on Film Cooling with Compound Angle Orientations
,”
Proceedings of the International Symposium on Heat Transfer in Gas Turbine Systems: International Centre for Heat and Mass Transfer (ICHMT)
,
Antalya, Turkey
,
Aug. 9–14
..
22.
Li
,
J. J.
,
Yan
,
X.
,
He
,
K.
, and
Goldstein
,
R.
,
2021
, “
Implementation of Rectangular Vortex Generator Pairs to Improve Film Cooling Effectiveness on Transonic Rotor Blade Endwall
,”
ASME J. Eng. Gas Turbines Power
,
143
(
9
), p.
091022
.
23.
Sarkar
,
S.
, and
Ranakoti
,
G.
,
2017
, “
Effect of Vortex Generators on Film Cooling Effectiveness
,”
ASME J. Turbomach.
,
139
(
6
), p.
061009
.
24.
Li
,
Y. F.
,
Zhang
,
Y.
,
Su
,
X. R.
, and
Yuan
,
X.
,
2018
, “
Experimental and Numerical Investigations of Shaped Hole Film Cooling With the Influence of Endwall Cross Flow
,”
Int. J. Heat Mass Transfer
,
120
, pp.
42
55
.
25.
Chowdhury
,
N. H. K.
,
Shiau
,
C. C.
,
Han
,
J. C.
,
Zhang
,
L.
, and
Moon
,
H. K.
,
2017
, “
Turbine Vane Endwall Film Cooling With Slashface Leakage and Discrete Hole Configuration
,”
ASME J. Turbomach.
,
139
(
6
), p.
061003
.
26.
Werschnik
,
H.
,
Schiffer
,
H. P.
, and
Steinhausen
,
C.
,
2017
, “
Robustness of a Turbine Endwall Film Cooling Design to Swirling Combustor Inflow
,”
J. Propul. Power
,
33
(
4
), pp.
917
926
.
27.
Ethridge
,
M. I.
,
Cutbirth
,
J. M.
, and
Bogard
,
D. G.
,
2001
, “
Scaling of Performance for Varying Density Ratio Coolants on an Airfoil With Strong Curvature and Pressure Gradient Effects
,”
ASME J. Turbomach.
,
123
(
2
), pp.
231
237
.
28.
Kline
,
S. J.
, and
McClintock
,
F. A.
,
1953
, “
Describing Uncertainties in Single-Sample Experiments
,”
Mech. Eng.
,
75
(
1
), pp.
3
8
.
29.
Guo
,
C.
,
Wang
,
B.
,
Kang
,
Z. Y.
,
Zhang
,
W. W.
, and
Zheng
,
H. L.
,
2021
, “
Numerical Simulation Study on Cooling Characteristics of a New Type of Film Hole
,”
J. Therm. Sci.
,
30
(
01
), pp.
210
219
.
30.
He
,
J.
,
Deng
,
Q. H.
, and
Feng
,
Z. P.
,
2021
, “
Film Cooling Performance Enhancement by Upstream V-Shaped Protrusion/Dimple Vortex Generator
,”
Int. J. Heat Mass Transfer
,
180
, p.
171784
.
31.
Wang
,
J.
,
Tian
,
K.
,
Luo
,
J.
, and
Sundén
,
B.
,
2019
, “
Effect of Hole Configurations on Film Cooling Performance
,”
Numer. Heat Transfer, Part A
,
75
(
11
), pp.
725
738
.
You do not currently have access to this content.