Abstract

A numerical investigation is performed for double-jet film cooling (DJFC) on a semi-cylindrical leading edge under four momentum flux ratios. Three rows of film cooling holes are distributed on the leading edge, wherein DJFC units are applied at ± 30 deg lines and the film cooling holes at the stagnation line remain in cylindrical shape in the baseline case. Totally, nine cases of DJFC units are designed by altering the spanwise spacing, streamwise spacing, and streamwise injection angle, while keeping the spanwise injection angle unchanged. The results show that proper layout of DJFC unit produces a “branched” spreading feature of jet trajectories, attributed to the formation of the anti-kidney vortex pair. Evaluated in the spatially averaged results on the semi-cylindrical leading-edge surface, DJFC could increase the adiabatic film cooling effectiveness up 20% at I = 1.3 with respect to the baseline case. Among the current geometric parameters in the DJFC unit, the spanwise spacing is an important parameter affecting the jet spreading feature. In relative to the spanwise spacing, the streamwise injection angle shows a weaker influence on vortical structures in the downstream flowfield. A larger spanwise spacing produces a greater adiabatic film cooling effectiveness but also a little bigger heat transfer coefficient. A similar trend is also demonstrated for the streamwise injection angle. The streamwise spacing has nearly no influence on the spatially averaged heat transfer coefficient. A smaller streamwise spacing is more promising for increasing adiabatic film cooling effectiveness.

References

1.
Han
,
J. C.
,
2013
, “
Fundamental Gas Turbine Heat Transfer
,”
ASME J. Therm. Sci. Eng. Appl.
,
5
(
2
), p.
021007
.
2.
Bogard
,
D. G.
, and
Thole
,
K. A.
,
2006
, “
Gas Turbine Film Cooling
,”
AIAA J. Propul. Power
,
22
(
2
), pp.
249
269
.
3.
Haven
,
B. A.
, and
Kurosaka
,
M.
,
1997
, “
Kidney and Anti-Kidney Vortices in Crossflow Jets
,”
ASME J. Fluid Mech.
,
352
(
1
), pp.
27
64
.
4.
Goldstein
,
R. J.
,
Eckert
,
E. R. G.
, and
Burggraf
,
F.
,
1974
, “
Effects of Hole Geometry and Density on Three-Dimensional Film Cooling
,”
Int. J. Heat Mass Transfer
,
17
(
5
), pp.
595
607
.
5.
Bunker
,
R. S.
,
2005
, “
A Review of Turbine Shaped Film Cooling Technology
,”
ASME J. Heat Transfer-Trans. ASME
,
127
(
4
), pp.
441
453
.
6.
Acharya
,
S.
, and
Kanani
,
Y.
,
2017
, “
Advances in Film Cooling Heat Transfer
,”
Adv. Heat Transfer
,
49
, pp.
91
156
.
7.
Zhang
,
J. Z.
,
Zhang
,
S. C.
,
Wang
,
C. H.
, and
Tan
,
X. M.
,
2020
, “
Recent Advances in Film Cooling Enhancement: A Review
,”
Chin. J. Aeronaut.
,
33
(
4
), pp.
1119
1136
.
8.
Kusterer
,
K.
,
Elyas
,
A.
,
Bohn
,
D.
,
Sugimoto
,
T.
,
Tanaka
,
R.
, and
Kazari
,
M.
,
2011
, “
The NEKOMIMI Cooling Technology: Cooling Holes with Ears for High-Efficient Film Cooling
,”
ASME Turbo Expo 2011
, Paper No. GT2011-45524.
9.
Kim
,
S. M.
,
Lee
,
K. D.
, and
Kim
,
K. Y.
,
2012
, “
A Comparative Analysis of Various Shaped Film-Cooling Holes
,”
Heat Mass Transfer
,
48
(
11
), pp.
1929
1939
.
10.
Yang
,
C. F.
, and
Zhang
,
J. Z.
,
2012
, “
Experimental Investigation on Film Cooling Characteristics From a Row of Holes with Ridge-Shaped Tabs
,”
Exp. Therm. Fluid Sci.
,
37
, pp.
113
120
.
11.
Repko
,
T. W.
,
Nix
,
A. C.
,
Uysal
,
C.
, and
Heidmann
,
J. D.
,
2017
, “
Numerical Study on the Effects of Freestream Turbulence on Antivortex Film Cooling Design
,”
ASME J. Therm. Sci. Eng. Appl.
,
9
(
1
), p.
011013
.
12.
Ramesh
,
S.
,
LeBlanc
,
C.
,
Narzary
,
D.
,
Ekkad
,
S.
, and
Alvin
,
M. A.
,
2017
, “
Film Cooling Performance of Tripod Antivortex Holes Over the Pressure and Suction Surfaces of a Nozzle Guide Vane
,”
ASME J. Therm. Sci. Eng. Appl.
,
9
(
2
), p.
021006
.
13.
Zhu
,
R.
,
Simon
,
T. W.
, and
Xie
,
G. N.
,
2018
, “
Influence of Secondary Hole Injection Angle on Enhancement of Film Cooling Effectiveness with Horn-Shaped or Cylindrical Primary Holes
,”
Numer. Heat Transfer Part A
,
74
(
5
), pp.
1207
1227
.
14.
Tan
,
X. M.
,
Zhang
,
J. Z.
, and
Cai
,
Q. Z.
,
2019
, “
Effects of Pin-Fin Shaped on Mesh-Fed Slot Film Cooling for a Flat-Plate Model
,”
ASME J. Therm. Sci. Eng. Appl.
,
11
(
3
), p.
031002
.
15.
Bunker
,
R. S.
,
2010
, “
Film Cooling: Breaking the Limits of Diffusion Shaped Holes
,”
Heat Transfer Res.
,
41
(
6
), pp.
627
650
.
16.
Kusterer
,
K.
,
Bohn
,
D.
,
Sugimoto
,
T.
, and
Tanaka
,
R.
,
2007
, “
Double-Jet Ejection of Cooling Air for Improved Film Cooling
,”
ASME J. Turbomach.
,
129
(
4
), pp.
809
815
.
17.
Kusterer
,
K.
,
Bohn
,
D.
,
Sugimoto
,
T.
, and
Tanaka
,
R.
,
2007
, “
Influence of Blowing Ratio on the Double-Jet Ejection of Cooling Air
,”
ASME Turbo Expo 2007
, Paper No. GT2007-27301.
18.
Kusterer
,
K.
,
Elyas
,
A.
,
Bohn
,
D.
,
Sugimoto
,
T.
, and
Tanaka
,
R.
,
2008
, “
Double-Jet Film-Cooling for Highly Efficient Film-Cooling with Low Blowing Ratios
,”
ASME Turbo Expo 2008
, Paper No. GT2008-50073.
19.
Kusterer
,
K.
,
Elyas
,
A.
,
Bohn
,
D.
,
Sugimoto
,
T.
,
Tanaka
,
R.
, and
Kazari
,
M.
,
2009
, “
A Parametric Study on the Influence of the Lateral Ejection Angle of Double-Jet Holes on the Film Cooling Effectiveness for High Blowing Ratios
,”
ASME Turbo Expo 2009
, Paper No. GT2009-59321.
20.
Wang
,
Z.
,
Liu
,
J. J.
,
An
,
B. T.
, and
Zhang
,
C.
,
2011
, “
Effects of Axial Row Spacing for Double-Jet Film-Cooling on the Cooling Effectiveness
,”
ASME Turbo Expo 2011
, Paper No. GT2011-46055.
21.
Han
,
C.
,
Ren
,
J.
, and
Jiang
,
H. D.
,
2012
, “
Multi-Parameter Influence on Combined-Hole Film Cooling System
,”
Int. J. Heat Mass Transfer
,
55
(
15–16
), pp.
4232
4240
.
22.
Han
,
C.
,
Chi
,
Z. R.
,
Ren
,
J.
, and
Jiang
,
H. D.
,
2015
, “
Optimal Arrangement of Combined-Hole for Improving Film Cooling Effectiveness
,”
ASME J. Therm. Sci. Eng. Appl.
,
7
(
1
), p.
011010
.
23.
Choi
,
D. W.
,
Lee
,
K. D.
, and
Kim
,
K. Y.
,
2013
, “
Analysis and Optimization of Double-Jet Film-Cooling Holes
,”
J. Thermophy. Heat Transfer
,
27
(
2
), pp.
246
254
.
24.
Lee
,
K. D.
,
Choi
,
D. W.
, and
Kim
,
K. Y.
,
2013
, “
Optimization of Ejection Angles of Double-Jet Film-Cooling Holes Using RBNN Model
,”
Int. J. Therm. Sci.
,
73
, pp.
69
78
.
25.
Graf
,
L.
, and
Kleiser
,
L.
,
2014
, “
Film Cooling Using Antikidney Vortex Pairs: Effects of Blowing Conditions and Yaw Angle on Cooling and Losses
,”
ASME J. Turbomach.
,
136
(
1
), p.
011008
.
26.
Liao
,
G. L.
,
Wang
,
J. J.
,
Li
,
J.
, and
Zhang
,
F.
,
2014
, “
Effects of Curvature on the Film Cooling Effectiveness of Double-Jet Film Cooling
,”
ASME Turbo Expo 2014
, Paper No. GT2014-26263.
27.
Yao
,
J. X.
,
Xu
,
J.
,
Zhang
,
K.
,
Lei
,
J.
, and
Wright
,
L. M.
,
2018
, “
Interaction of Flow and Film- Cooling Effectiveness Between Double-Jet Film-Cooling Holes with Various Spanwise Distances
,”
ASME J. Turbomach.
,
140
(
12
), p.
121011
.
28.
Yao
,
J. X.
,
Zhang
,
K.
,
Wu
,
J. M.
,
Lei
,
J.
,
Fang
,
Y.
, and
Wright
,
L. M.
,
2019
, “
An Experimental Investigation on Streamwise Distance and Density Ratio Effects on Double-Jet Film-Cooling
,”
Appl. Therm. Eng.
,
156
, pp.
410
421
.
29.
Kannan
,
E.
,
Sivamani
,
S.
,
Roychowdhury
,
D. G.
,
Premkumar
,
T. M.
, and
Hariram
,
V.
,
2019
, “
Improvement in Film Cooling Effectiveness Using Single and Double Rows of Holes With Adverse Compound Angle Orientations
,”
ASME J. Therm. Sci. Eng. Appl.
,
11
(
6
), p.
021014
.
30.
He
,
J. H.
,
Yao
,
J. X.
,
Yang
,
X.
,
Duan
,
J. T.
,
Lei
,
J.
, and
Xie
,
G. N.
,
2020
, “
Effects of Mainstream Attack Angle on Film Cooling Effectiveness of Double-Jet Film-Cooling
,”
Int. J. Therm. Sci.
,
149
, p.
106183
.
31.
Mehendale
,
A. B.
, and
Han
,
J. C.
,
1993
, “
Reynolds Number Effect on Leading Edge Film Effectiveness and Heat Transfer Coefficient
,”
Int. J. Heat Mass Transfer
,
36
(
15
), pp.
3723
3730
.
32.
Ekkad
,
S. V.
,
Han
,
J. C.
, and
Du
,
H.
,
1997
, “
Detailed Film Cooling Measurement on a Cylindrical Leading Edge Model: Effect of Free-Stream Turbulence and Coolant Density
,”
ASME J. Turbomach.
,
120
(
4
), pp.
799
807
.
33.
Ou
,
S.
, and
Rivir
,
R. B.
,
2001
, “
Leading Edge Film Cooling Heat Transfer with High Free Stream Turbulence Using a Transient Liquid Crystal Image Method
,”
Int. J. Heat Fluid Flow
,
22
(
6
), pp.
614
623
.
34.
Yuki
,
U. M.
,
Bogard
,
D. G.
, and
Cutbrith
,
J. M.
,
1998
, “
Effect of Coolant Injection on Heat Transfer for a Simulated Turbine Airfoil Leading Edge
,”
ASME Turbo Expo 1998
, Paper No. 98-GT-431.
35.
Li
,
S. J.
,
Yang
,
S. F.
, and
Han
,
J. C.
,
2014
, “
Effect of Coolant Density on Leading Edge Showerhead Film Cooling Using the Pressure Sensitive Paint Measurement Technique
,”
ASME J. Turbomach.
,
136
(
5
), p.
051011
.
36.
Hou
,
R.
,
Wen
,
F. B.
,
Luo
,
Y. X.
, and
Wang
,
S. T.
,
2021
, “
Influence of Inlet Swirl on Film Cooling of the Turbine Leading Edge
,”
Heat Transfer Eng.
,
42
(
12
), pp.
985
1001
.
37.
Cruse
,
M. W.
,
Yuki
,
U. M.
, and
Bogard
,
D. G.
,
1997
, “
Investigation of Various Parametric Influence on Leading Edge Film Cooling
,”
ASME Turbo Expo 1997
, Paper No. 97-GT-296.
38.
Lin
,
Y. L.
, and
Shih
,
T. I. P.
,
2001
, “
Film Cooling of a Cylindrical Leading Edge with Injection Through Rows of Compound-Angle Holes
,”
ASME J. Heat Transfer-Trans. ASME
,
123
(
4
), pp.
645
654
.
39.
Dyson
,
T. E.
,
Bogard
,
D. G.
,
Piggush
,
J. D.
, and
Kohli
,
A.
,
2013
, “
Overall Effectiveness for a Film Cooled Turbine Blade Leading Edge with Varying Hole Pitch
,”
ASME J. Turbomach.
,
135
(
3
), p.
031011
.
40.
Chowdhury
,
N. H. K.
,
Qureshi
,
S. A.
,
Zhang
,
M. J.
, and
Han
,
J. C.
,
2017
, “
Influence of Turbine Blade Leading Edge Shape on Film Cooling with Cylindrical Holes
,”
Int. J. Heat Mass Transfer
,
115
, pp.
895
908
.
41.
Reiss
,
H.
, and
Bolcs
,
A.
,
2000
, “
Experimental Study of Showerhead Cooling on a Cylinder Comparing Several Configurations Using Cylindrical and Shaped Holes
,”
ASME J. Turbomach.
,
122
(
1
), pp.
161
169
.
42.
Lu
,
Y. P.
,
Allison
,
D.
, and
Ekkad
,
S. V.
,
2007
, “
Turbine Blade Showerhead Film Cooling: Influence of Hole Angle and Shaping
,”
Int. J. Heat Fluid Flow
,
28
(
5
), pp.
922
931
.
43.
Gao
,
Z. H.
, and
Han
,
J. C.
,
2009
, “
Influence of Film-Hole Shape and Angle on Showerhead Film Cooling Using PSP Technique
,”
ASME J. Heat Transfer-Trans. ASME
,
131
(
6
), p.
061701
.
44.
Elnady
,
T.
,
Hassan
,
I.
,
Kadem
,
L.
, and
Lucas
,
T.
,
2013
, “
Cooling Effectiveness of Shaped Film Holes for Leading Edge
,”
Exp. Therm. Fluid Sci.
,
44
, pp.
649
661
.
45.
Lin
,
C. L.
,
Zhu
,
H. R.
,
Zhang
,
X.
,
Xu
,
D. C.
, and
Zhang
,
Z. W.
,
2014
, “
Experimental Investigation on the Leading Edge Film Cooling of Cylindrical and Laid-Back Holes with Different Radial Angles
,”
Int. J. Heat Mass Transfer
,
71
, pp.
615
625
.
46.
Zhang
,
M. J.
,
Wang
,
N.
,
Chen
,
A. F.
, and
Han
,
J. C.
,
2018
, “
Influence of Turbine Blade Leading Edge Profile on Film Cooling with Shaped Holes
,”
ASME J. Therm. Sci. Eng. Appl.
,
10
(
5
), p.
051006
.
47.
Islami
,
S. B.
,
Alavi Tabrizi
,
S. P.
, and
Jubran
,
B. A.
,
2008
, “
Computational Investigation of Film Cooling From Trenched Holes Near the Leading Edge of a Turbine Blade
,”
Num. Heat Transfer Part A
,
53
(
3
), pp.
308
322
.
48.
Islami
,
S. M.
,
Alavi Tabrizi
,
S. P.
,
Jubran
,
B. A.
, and
Esmaeilzadeh
,
E.
,
2010
, “
Influence of Trenched Shaped Holes on Turbine Blade Leading Edge Film Cooling
,”
Heat Transfer Eng.
,
31
(
10
), pp.
889
906
.
49.
Hou
,
R.
,
Wen
,
F. B.
,
Tang
,
X. L.
,
Cui
,
T.
, and
Wang
,
S. T.
,
2019
, “
Improvement of Film Cooling Performance by Trenched Holes on Turbine Leading Edge Models
,”
Num. Heat Transfer Part A
,
76
(
3
), pp.
160
177
.
50.
Wen
,
F. B.
,
Hou
,
R.
,
Luo
,
Y. X.
, and
Wang
,
S. T.
,
2021
, “
Study on Leading Edge Trenched Holes Arrangement Under Real Turbine Flow Conditions
,”
Eng. Appl. Comput. Fluid Mech.
,
15
(
1
), pp.
781
797
.
51.
Celik
,
I. B.
,
Ghia
,
U.
,
Roache
,
P. J.
,
Freitas
,
C. J.
,
Coleman
,
H.
, and
Raad
,
P. E.
,
2008
, “
Procedure for Estimation and Reporting of Uncertainty Due to Discretization in CFD Applications
,”
ASME J. Fluids Eng.
,
130
(
7
), p.
0780011
.
52.
ANSYS Inc.
,
2012
,
ANSYS Fluent 14.0 User’s Guide
,
ANSYS Inc.
,
Canonsburg, PA
.
53.
Walters
,
D. K.
, and
Leylek
,
J. H.
,
2002
, “
Computational Study of Film-Cooling Effectiveness on a Low-Speed Airfoil Cascade: Part I-Methodology and Validation
,”
International Design Engineering Technical Conferences and Computers and Information in Engineering Conference 2002
, pp.
281
288
, Paper No. DETC2002/CIE-34421.
54.
Chernobrovkin
,
A.
, and
Lakshminarayana
,
B.
,
2005
, “
Numerical Simulation and Aerothermal Physics of Leading Edge Film Cooling
,”
Proc. Inst. Mech. Eng.
,
213
(
2
), pp.
103
118
.
55.
Ely
,
M. J.
, and
Jubran
,
B. A.
,
2009
, “
A Numerical Evaluation on the Effect of Sister Holes on Film Cooling Effectiveness and the Surrounding Flow Filed
,”
Heat Mass Transfer
,
45
(
11
), pp.
1435
1446
.
56.
Khajehhasani
,
S.
, and
Jubran
,
B. A.
,
2016
, “
A Numerical Evaluation of the Performance of Film Cooling From a Circular Exit Shaped Hole with Sister Holes Influence
,”
Heat Transfer Eng.
,
37
(
2
), pp.
183
197
.
57.
Jindal
,
P.
,
Agarwal
,
S.
,
Sharma
,
R. P.
, and
Roy
,
A. K.
,
2017
, “
Numerical Investigation of Film Cooling Enhancement Using Staggered Row Mixed Hole Arrangements
,”
ASME J. Therm. Sci. Eng. Appl.
,
9
(
2
), p.
021007
.
You do not currently have access to this content.