Abstract

Concentrated solar thermochemical storage in the form of a zero-emission fuel is a promising option to produce long-duration energy storage. Solar fuel is produced using a cavity reactor that captures concentrated solar radiation from a solar field of heliostats. In this paper, heat transfer model of a tubular plug-flow reactor designed and manufactured for a solar fuel production is presented. Experimental data collected from a fixed bed tubular reactor testing are used for model comparison. The system consists of an externally heated tube with counter-current flowing gas and moving solid particles as the heated media. The proposed model simulates the dynamic behavior of temperature profiles of the tube wall, gas, and particles under various gas flowrates and residence times. The heat transfer between gas–wall, solid particle–wall, and gas–solid particle is numerically studied. The model results are compared with the results of experiments done using a 4 kW furnace with a 150 mm heating zone surrounding a horizontal alumina tube (reactor) with 50.8 mm outer diameter and thickness of 3.175 mm. Solid fixed particles of magnesium manganese oxide (MgMn2O4) with the size of 1 mm are packed within the length of 250 mm at the center of the tube length. Simulation results are assessed with respect to fixed bed experimental data for four different gas flowrates, namely, 5, 10, 15, and 20 standard liters per minute of air, and furnace temperatures in the range of 200–1200 °C. The simulation results showed good agreement with maximum steady state error that is less than 6% of those obtained from the experiments for all runs. The proposed model can be implemented as a low-order physical model for the control of temperature inside plug-flow reactors for thermochemical energy storage applications.

References

1.
Muhich
,
C. L.
,
Ehrhart
,
B. D.
,
Al-Shankit
,
I.
,
Ward
,
B. J.
,
Musgrave
,
C. B.
, and
Weimer
,
A. W.
,
2016
, “
A Review and Perspective of Efficient Hydrogen Generation Via Solar Thermal Water Splitting
,”
Wiley Interdiscipl. Rev.: Energy Environ.
,
5
(
3
), pp.
261
287
.
2.
Marxer
,
D.
,
Furler
,
P.
,
Takacs
,
M.
, and
Steinfeld
,
A.
,
2017
, “
Solar Thermochemical Splitting of CO2 Into Separate Streams of CO and O2 With High Selectivity, Stability, Conversion, and Efficiency
,”
Energy Environ. Sci.
,
10
(
5
), pp.
1142
1149
.
3.
Agrafiotis
,
C.
,
Roeb
,
M.
,
Schmücker
,
M.
, and
Sattler
,
C.
,
2014
, “
Exploitation of Thermochemical Cycles Based on Solid Oxide Redox Systems for Thermochemical Storage of Solar Heat. Part 1: Testing of Cobalt Oxide-Based Powders
,”
Sol. Energy
,
102
, pp.
189
211
.
4.
André
,
L.
,
Abanades
,
S.
, and
Flamant
,
G.
,
2016
, “
Screening of Thermochemical Systems Based on Solid–-Gas Reversible Reactions for High Temperature Solar Thermal Energy Storage
,”
Renew. Sustain. Energy Rev.
,
64
, pp.
703
715
.
5.
Mamani
,
V.
,
Gutiérrez
,
A.
, and
Ushak
,
S.
,
2018
, “
Development of Low-Cost Inorganic Salt Hydrate as a Thermochemical Energy Storage Material
,”
Sol. Energy Mater. Sol. Cells
,
176
, pp.
346
356
.
6.
Li
,
S.
,
Liu
,
J.
,
Tan
,
T.
,
Nie
,
J.
, and
Zhang
,
H.
,
2020
, “
Optimization of LiNO3–Mg(OH)2 Composites as Thermo-Chemical Energy Storage Materials
,”
J. Environ. Manage.
,
262
, p.
110258
.
7.
Prieto
,
C.
,
Cooper
,
P.
,
Fernández
,
A. I.
, and
Cabeza
,
L. F.
,
2016
, “
Review of Technology: Thermochemical Energy Storage for Concentrated Solar Power Plants
,”
Renew. Sustain. Energy Rev.
,
60
, pp.
909
929
.
8.
Fahim
,
M. A.
, and
Ford
,
J. D.
,
1983
, “
Energy Storage Using the BaO2/BaO Reaction Cycle
,”
Chem. Eng. J.
,
27
(
1
), pp.
21
28
.
9.
Hutchings
,
K. N.
,
Wilson
,
M.
,
Larsen
,
A.
, and
Cutler
,
R. A.
,
2006
, “
Kinetic and Thermodynamic Considerations for Oxygen Absorption/Desorption Using Cobalt Oxide
,”
Solid State Ionics
,
177
(
1–2
), pp.
45
51
.
10.
Karagiannakis
,
G.
,
Pagkoura
,
C.
,
Halevas
,
E.
,
Baltzopoulou
,
P.
, and
Konstandopoulos
,
A. G.
,
2016
, “
Cobalt/Cobaltous Oxide Based Honeycombs for Thermochemical Heat Storage in Future Concentrated Solar Power Installations: Multi-cyclic Assessment and Semi-Quantitative Heat Effects Estimations
,”
Sol. Energy
,
133
, pp.
394
407
.
11.
Wokon
,
M.
,
Kohzer
,
A.
, and
Linder
,
M.
,
2017
, “
Investigations on Thermochemical Energy Storage Based on Technical Grade Manganese-Iron Oxide in a Lab-Scale Packed Bed Reactor
,”
Sol. Energy
,
153
, pp.
200
214
.
12.
Randhir
,
K.
,
King
,
K.
,
Rhodes
,
N.
,
Li
,
L.
,
Hahn
,
D.
,
Mei
,
R.
,
Aeyung
,
N.
, and
Klausner
,
J.
,
2019
, “
Magnesium-Manganese Oxides for High-Temperature Thermochemical Energy Storage
,”
J. Energy Storage
,
21
, pp.
599
610
.
13.
Wen
,
D.
, and
Ding
,
Y.
,
2006
, “
Heat Transfer of Gas Flow Through a Packed Bed
,”
Chem. Eng. Sci.
,
61
(
11
), pp.
3532
3542
.
14.
Yuen
,
M. C.
, and
Chen
,
L. W.
,
1978
, “
Heat-Transfer Measurements of Evaporating Liquid Droplets
,”
Int. J. Heat Mass Transfer
,
21
(
5
), pp.
537
542
.
15.
Stenberg
,
V.
,
Sköldberg
,
V.
,
Öhrby
,
L.
, and
Rydén
,
M.
,
2019
, “
Evaluation of Bed-to-Tube Surface Heat Transfer Coefficient for a Horizontal Tube in Bubbling Fluidized Bed at High Temperature
,”
Powder Technol.
,
352
, pp.
488
500
.
16.
Sih
,
S.
, and
Barlow
,
J.
,
2004
, “
The Prediction of the Emissivity and Thermal Conductivity of Powder Beds
,”
Part. Sci. Technol.
,
22
(
4
), pp.
427
440
.
17.
Sullivan
,
W. N.
, and
Sabersky
,
R. H.
,
1975
, “
Heat Transfer to Flowing Granular Media
,”
Int. J. Heat Mass Transfer
,
18
(
1
), pp.
97
107
.
18.
ASME PTC 19.1-1998
, “
Test Uncertainty, Instruments and Apparatus
,” Supplement to the ASME Performance Test Codes.
19.
Taylor
,
J. L.
,
1988
,
Fundamentals of Measurement Error
,
Neff Instrument Corporation
.
20.
Nakos
,
J. T.
,
2004
, “
Uncertainty Analysis of Thermocouple Measurements Used in Normal and Abnormal Thermal Environment Experiments at Sandia’s Radiant Heat Facility and Lurance Canyon Burn Site
,” National Laboratories Report, SAND2004-1023, Sandia.
21.
King
,
K.
,
Randhir
,
K.
, and
Klausner
,
J.
,
2019
, “
Calorimetric Method for Determining the Thermochemical Energy Storage Capacities of Redox Metal Oxides
,”
Thermochim. Acta
,
673
, pp.
105
118
.
22.
Hayes
,
M.
,
Masoomi
,
F.
,
Schimmels
,
P.
,
Randhir
,
K.
,
Klausner
,
J.
, and
Petrasch
,
J.
,
2021
, “
Ultra-High Temperature Thermal Conductivity Measurements of a Reactive Magnesium Manganese Oxide Porous Bed Using a Transient Hot Wire Method
,”
ASME J. Heat Transfer-Trans. ASME
,
143
(
10
), p.
104502
.
You do not currently have access to this content.