Abstract

With the development of deep space exploration technology, thermal control systems for space telescopes are becoming increasingly complex, leading to the key parameters of conventional thermal control systems are difficult to adjust online automatically. To achieve these adjustments, this paper provided detailed verification of the application of deep reinforcement learning to space telescope thermal control from three perspectives: thermophysical modeling, intelligent sensing-based radiator, and online self-tuning of thermal control parameters. This paper presents a high-speed and high-precision thermophysical modeling strategy in matlab/simulink with better computational efficiency than conventional approaches. And an intelligent sensing-based radiator is proposed that can realize autonomous regulation of the radiating cold plate by sensing the external space environment and the thermal load inside the spacecraft. A strategy for online self-tuning of the thermal control parameters based on deep reinforcement learning is also proposed. Theoretical and experimental results show that deep reinforcement learning thermal control (DRLPID) can achieve temperature control accuracy of 0.05 °C. The steady-state errors in the simulations were reduced by 22.7%, 37.4%, and 47.4% when compared with the reinforcement learning proportional–integral–derivative (PID), the neural network PID, and the fuzzy PID, respectively. The experimental steady-state errors were reduced by 20.4%, 32.5%, and 42.7%, respectively.

References

1.
Lei
,
Z.
,
Ming
,
L.
,
Danni
,
L.
,
Zhao
,
Z.
, and
Liujun
,
Z.
,
2017
, “
Thermal Optics Property Study and Athermal Design on Optical Window of IR Aiming Device Reliability Testing System
,”
Optik
,
136
, pp.
586
594
.
2.
Kumar Rai
,
P.
,
Rao Chikkala
,
S.
,
Adoni
,
A. A.
, and
Kumar
,
D.
,
2015
, “
Space Radiator Optimization for Single-Phase Mechanical Pumped Fluid Loop
,”
ASME J. Therm. Sci. Eng. Appl.
,
7
(
4
), p.
041021
.
3.
Phoenix
,
A. A.
, and
Wilson
,
E.
,
2018
, “
Adaptive Thermal Conductivity Metamaterials: Enabling Active and Passive Thermal Control
,”
ASME J. Therm. Sci. Eng. Appl.
,
10
(
5
), p.
051020
.
4.
Li
,
S.
,
Chen
,
L.
, and
Yang
,
Y.
,
2020
, “
Thermal Design and Test Verification of the Solar X-Ray and Extreme Ultraviolet Imager
,”
Optik
,
203
(
2018
), p.
164017
.
5.
Huang
,
P. G.
, and
Doman
,
D. B.
,
2018
, “
Thermal Management of Single- and Dual-Tank Fuel-Flow Topologies Using an Optimal Control Strategy
,”
ASME J. Therm. Sci. Eng. Appl.
,
10
(
4
), p.
041019
.
6.
Gao
,
Y.
,
Zhang
,
B.
,
Chen
,
L.
,
Xu
,
B.
, and
Gu
,
G.
,
2019
, “
Thermal Design and Analysis of the High Resolution MWIR/LWIR Aerial Camera
,”
Optik
,
179
, pp.
37
46
.
7.
Jihui
,
L.
,
Shuangli
,
H.
,
Jiaqi
,
W.
,
L
,
E.
, and
Jun
,
W.
,
1999
, “
Thermal Analysis and Thermal Control Techniques of Space Camera
,”
Opt. Precis. Eng.
,
7
(
6
), pp.
36
41
.
8.
Choi
,
M. K.
,
2004
, “
Method of Generating Transient Equivalent Sink and Test Target Temperatures for Swift BAT
,”
Collection of Technical Papers—2nd International Energy Conversion Engineering Conference
, Vol.
3
, pp.
1377
1384
.
9.
John Anger Richmond
,
L.
,
Colonel John Keesee
,
U.
, and
Retired
,
U.
,
2010
, “
Adaptive Thermal Modeling Architecture for Small Satellite Applications
,”
Doctoral dissertation
,
Massachusetts Institute of Technology
.
10.
Galski
,
R. L.
,
De Sousa
,
F. L.
,
Ramos
,
F. M.
, and
Muraoka
,
I.
,
2007
, “
Spacecraft Thermal Design With the Generalized Extremal Optimization Algorithm
,”
Inverse Problems Sci. Eng.
,
15
(
1
), pp.
61
75
.
11.
Lemmen
,
M.
,
Kouwen
,
J.
,
Koorevaar
,
F.
, and
Pennings
,
N.
,
2004
, “
In-Flight Results of the Sciamachy Optical Assembly Active Thermal Control System
,”
SAE Technical Paper No. 2004-01-2357
.
12.
Jia
,
L.
,
Yunze
,
L.
,
Jiaxun
,
Z.
,
Peiguang
,
W.
, and
Jun
,
W.
,
2009
, “
Development of the Spacecraft MEMS Autonomous Thermal Control System Based on Intelligent Agent
,”
Spacecraft Environ. Eng.
,
26
(
6
), pp.
574
579
.
13.
Li
,
Y.-Z.
,
Lee
,
K.-M.
, and
Wang
,
J.
,
2009
, “
Intelligent Equivalent Physical Simulator for Nanosatellite Space Radiator
,”
2009 IEEE/ASME International Conference on Advanced Intelligent Mechatronics, IEEE
,
Singapore
,
July 14–17
, IEEE, pp.
504
509
.
14.
Xin
,
N. X. Z. J. Z.
,
2008
, “
Feed Forward PID Control of Satellite Single-Phase Fluid Loop Thermal Control System
,”
Chin. Space Sci. Technol.
,
28
(
4
), p.
4
.
15.
Wang
,
Z.
,
Yin
,
Z.
, and
Xiong
,
Y.
,
2010
, “
Temperature Control and PID Parameters Optimization Based on Finite Element Model
,”
2010 International Conference on Electrical and Control Engineering, IEEE
,
Wuhan, China
,
June 25–27
, pp.
2241
2244
.
16.
Song
,
J.
,
Cheng
,
W.
,
Xu
,
Z.
,
Yuan
,
S.
, and
Liu
,
M.
,
2016
, “
Study on PID Temperature Control Performance of a Novel PTC Material With Room Temperature Curie Point
,”
Int. J. Heat Mass Transfer
,
95
, pp.
1038
1046
.
17.
Grassi
,
E.
, and
Tsakalis
,
K.
,
2000
, “
PID Controller Tuning by Frequency Loop-Shaping: Application to Diffusion Furnace Temperature Control
,”
IEEE Trans. Control Syst. Technol.
,
8
(
5
), pp.
842
847
.
18.
Xiong
,
Y.
,
Guo
,
L.
,
Huang
,
Y.
, and
Chen
,
L.
,
2019
, “
Intelligent Thermal Control Strategy Based on Reinforcement Learning for Space Telescope
,”
J. Thermophys. Heat Transfer
,
34
(
1
), pp.
1
8
.
19.
Xiong
,
Y.
,
Guo
,
L.
,
Wang
,
H.
,
Huang
,
Y.
, and
Liu
,
C.
,
2020
, “
Intelligent Thermal Control Algorithm Based on Deep Deterministic Policy Gradient for Spacecraft
,”
J. Thermophys. Heat Transfer
,
34
(
4
), pp.
1
13
.
20.
Carvajal
,
J.
,
Chen
,
G.
, and
Ogmen
,
H.
,
2000
, “
Fuzzy PID Controller: Design, Performance Evaluation, and Stability Analysis
,”
Information Sci.
,
123
(
3
), pp.
249
270
.
21.
Chen
,
J.
, and
Huang
,
T. C.
,
2004
, “
Applying Neural Networks to On-Line Updated PID Controllers for Nonlinear Process Control
,”
J. Process Control
,
14
(
2
), pp.
211
230
.
22.
Richmond
,
J. A.
,
2010
, “
Adaptive Thermal Modeling Architecture for Small Satellite Applications
,”
Ph.D. thesis
,
Massachusetts Institute of Technology
.
23.
Lyon
,
R.
,
Sellers
,
J.
, and
Underwood
,
C.
,
2002
, “
Small Satellite Thermal Modeling and Design at USAFA: FalconSat-2 Applications
,”
IEEE Aerospace Conf. Proc.
,
7
, pp.
3391
3399
.
24.
Kov`acs
,
R.
, and
J´ozsa
,
V.
,
2018
, “
Thermal Analysis of the SMOG-1 PocketQube Satellite
,”
Appl. Therm. Eng.
,
139
, pp.
506
513
.
25.
The Mathworks Inc.
,
2018
,
MATLAB—MathWorks
.
26.
Ahmad
,
P.
,
Ali Mohammadi
,
M. S.
, and
Parvaresh
,
A.
,
2012
, “
A New Mathematical Dynamic Model for HVAC System Components Based on Matlab/Simulink
,”
Int. J. Innovative Technol. Exploring Eng.
,
1
(
2
), pp.
1
6
.
27.
Shipman
,
W. J.
, and
Coetzee
,
L. C.
,
2019
, “
Reinforcement Learning and Deep Neural Networks for PI Controller Tuning
,”
IFAC-PapersOnLine
,
52
(
14
), pp.
111
116
.
28.
Shang
,
X.
,
Ji
,
T.
,
Li
,
M.
,
Wu
,
P.
, and
Wu
,
Q.
,
2013
, “
Parameter Optimization of PID Controllers by Reinforcement Learning
,”
2013 5th Computer Science and Electronic Engineering Conference (CEEC), IEEE
,
Colchester, UK
,
Sept. 17–18
, pp.
77
81
.
29.
Lambert
,
N. O.
,
Drew
,
D. S.
,
Yaconelli
,
J.
,
Levine
,
S.
,
Calandra
,
R.
, and
Pister
,
K. S.
,
2019
, “
Low-Level Control of a Quadrotor With Deep Model-Based Reinforcement Learning
,”
IEEE Robot. Automation Lett.
,
4
(
4
), pp.
4224
4230
.
30.
El Hakim
,
A.
,
Hindersah
,
H.
, and
Rijanto
,
E.
,
2013
, “
Application of Reinforcement Learning on Self-Tuning PID Controller for Soccer Robot Multi-Agent System
,”
2013 Joint International Conference on Rural Information & Communication Technology and Electric-Vehicle Technology (rICT & ICeV-T), IEEE
,
Bandung, Indonesia
,
Nov. 26–28
, pp.
1
6
.
31.
Lillicrap
,
T. P.
,
Hunt
,
J. J.
,
Pritzel
,
A.
,
Heess
,
N.
,
Erez
,
T.
,
Tassa
,
Y.
,
Silver
,
D.
, and
Wierstra
,
D.
,
2016
, “
Continuous Control With Deep Reinforcement Learning
,”
4th International Conference on Learning Representations, ICLR 2016—Conference Track Proceedings, International Conference on Learning Representations, ICLR
,
San Juan, Puerto Rico
,
May 2–4
.
32.
Lee
,
P.-S.
,
Garimella
,
S. V.
, and
Liu
,
D.
,
2005
, “
Investigation of Heat Transfer in Rectangular Microchannels
,”
Int. J. Heat Mass Transfer
,
48
(
9
), pp.
1688
1704
.
33.
Westheimer
,
D.
, and
Tuan
,
G.
,
2005
, “
Active Thermal Control System Considerations for the Next Generation of Human Rated Space Vehicles
,”
43rd AIAA Aerospace Sciences Meeting and Exhibit
,
Reno, NV
,
Jan. 10–13
, p.
342
.
34.
Paris
,
A. D.
,
Birur
,
G. C.
, and
Green
,
A. A.
,
2002
, “
Development of MEMS Microchannel Heat Sinks for Micro/Nano Spacecraft Thermal Control
,”
ASME Int. Mech. Eng. Congress Expos.
,
36428
, pp.
25
31
.
35.
Birur
,
G. C.
,
Sur
,
T. W.
,
Paris
,
A. D.
,
Shakkottai
,
P.
,
Green
,
A. A.
, and
Haapanen
,
S. I.
,
2001
, “
Micro/Nano Spacecraft Thermal Control Using a MEMS-Based Pumped Liquid Cooling System
,”
Microfluidics and BioMEMS
,
San Francisco, CA
,
Sept. 28
, vol. 4560, pp.
196
206
.
36.
Osiander
,
R.
,
Champion
,
J.
,
Darrin
,
M.
,
Allen
,
J.
,
Douglas
,
D.
, and
Swanson
,
T.
,
2002
, “
Micro-Machined Shutter Arrays for Thermal Control Radiators on ST5
,”
40th AIAA Aerospace Sciences Meeting & Exhibit
,
Reno, NV
,
Jan. 14–17
, p.
359
.
37.
Osiander
,
R.
,
Firebaugh
,
S. L.
,
Champion
,
J. L.
,
Farrar
,
D.
, and
Darrin
,
M. G.
,
2004
, “
Microelectromechanical Devices for Satellite Thermal Control
,”
IEEE Sens. J.
,
4
(
4
), pp.
525
531
.
38.
National Instruments
,
2017
,
LabVIEW—National Instruments
.
39.
Yu
,
Y.
,
Zhang
,
Y.
,
Yuan
,
X.
, and
Hou
,
Q.
,
2014
, “
A LabVIEW-Based Real-Time Measurement System for Polarization Detection and Calibration
,”
Optik
,
125
(
10
), pp.
2256
2260
.
You do not currently have access to this content.