Abstract

Thermal analysis was performed for a vertical cabinet solar hybrid dryer having a salient feature of the perforated sheet along its entire height to achieve uniform drying. The dryer was integrated with a solar collector and gas burner for a hybrid heating source. Experiments were performed using tomato at 55 °C with solar, gas, and dual (solar-gas) heating sources. Energy analysis showed that rates of energy utilization were found in ranges of 2.7–12.5 kW (dual), 3–13 kW (gas), and 2.9–12 kW (solar), and energy ratios were 13–56% (dual), 14–58% (gas), and 12–50% (solar). Exergy analysis showed that exergy losses were 2.1–5.0 kJ/kg (dual), 2.1–5.3 kJ/kg (gas), and 1.5–4.2 kJ/kg (solar) while exergy efficiencies found 33–70% (dual), 30–75% (gas), and 20–69% (solar). Based on higher values of exergetic factor and improvement potential rate (IP), it was found that optimization of heating source especially those consisting solar collector and heat exchanger (IP 1.93 kW) is required. The specific energies for the removal of product moisture and to dry the product were found 2.42, 2.72, 2.58 MJ/kg of water and 18.8, 21.2, 20.15 MJ/kg dried product for drying processes conducted under solar, gas, and dual (solar-gas) heating sources, respectively. For design optimization, a complete algorithm has been prepared for complete drying systems in terms of available energy and losses.

References

1.
Sagar
,
V. R.
, and
Suresh Kumar
,
P.
,
2010
, “
Recent Advances in Drying and Dehydration of Fruits and Vegetables: A Review
,”
J. Food Sci. Technol.
,
47
(
1
), pp.
15
26
. 10.1007/s13197-010-0010-8
2.
Mujumdar
,
A. S.
,
2007
, “Principles, Classifications, and Selection of Dryers,”
Handbook of Industrial Drying
, 3rd ed,
Taylor & Francis
,
Boca Raton, FL
, pp.
1
32
.
3.
Amjad
,
W.
,
Hensel
,
O.
,
Munir
,
A.
,
Esper
,
A.
, and
Sturm
,
B.
,
2015
, “
Thermodynamic Analysis of Drying Process in a Diagonal–Batch Dryer Developed for Batch Uniformity Using Potato Slices
,”
J. Food Eng.
,
169
(
2
), pp.
238
249
. 10.1016/j.jfoodeng.2015.09.004
4.
Amjad
,
W.
,
Waseem
,
M.
,
Munir
,
A.
,
Ghafoor
,
A.
,
Asghar
,
F.
, and
Gilani
,
G. A.
,
2021
, “
Solar Assisted Dehydrator for Decentralized Controlled and Homogeneous Multi-Product Drying
,”
ASME J. Sol. Energy Eng.
,
143
(
1
), p.
011011
. 10.1115/1.4047671
5.
Jia
,
C.
,
Wang
,
L.
,
Guo
,
W.
, and
Liu
,
C.
,
2016
, “
Effect of Swing Temperature and Alternating Airflow on Drying Uniformity in Deep-Bed Wheat Drying
,”
Appl. Therm. Eng.
,
106
(
15
), pp.
774
783
. 10.1016/j.applthermaleng.2016.06.056
6.
Yuan Pu
,
Y.
, and
Wen Sun
,
D.
,
2017
, “
Combined Hot-Air and Microwave-Vacuum Drying for Improving Drying Uniformity of Mango Slices Based on Hyperspecial Imaging Visualization of Moisture Content Distribution
,”
Biosystems Eng.
,
156
(
4
), pp.
108
119
. 10.1016/j.biosystemseng.2017.01.006
7.
Sogut
,
Z.
,
Ilten
,
N.
, and
Oktay
,
Z.
,
2010
, “
Energetic and Exergetic Performance Evaluation of the Quadruple-Effect Evaporator Unit in Tomato Paste Production
,”
Energy
,
35
(
9
), pp.
3821
3826
. 10.1016/j.energy.2010.05.035
8.
Aziz
,
A.
,
Rehman
,
S. U.
, and
Rehman
,
S. U.
,
2016
, “
Exergy Analysis of Solar Cabinet Dryer and Evaluate the Performance Enhancement of Solar Cabinet Dryer by Addition of Solar Reflector
,”
Int. J. Renew. Energy Res.
,
6
(
4
), pp.
1397
1402
. 10.1016/0038-092x(66)90002-8
9.
Sami
,
S.
,
Etesami
,
N.
, and
Rahimi
,
A.
,
2011
, “
Energy and Exergy Analysis of an Indirect Solar Cabinet Dryer Based on Mathematical Modeling Results
,”
Energy
,
36
(
5
), pp.
2847
2855
. 10.1016/j.energy.2011.02.027
10.
Chowdhury
,
M. M. I.
,
Bala
,
M. K.
, and
Haque
,
M. A.
,
2011
, “
Energy and Exergy Analysis of the Solar Drying of Jackfruit Leather
,”
Biosystems Eng.
,
110
(
2
), pp.
222
229
. 10.1016/j.biosystemseng.2011.08.011
11.
Rabha
,
D. K.
,
Muthukumar
,
P.
, and
Somayaji
,
C.
,
2017
, “
Energy and Exergy Analyses of the Solar Drying Processes of Ghost Chilli Pepper and Ginger
,”
Renewable Energy
,
105
(
5
), pp.
764
773
. 10.1016/j.renene.2017.01.007
12.
Sabiha
,
M. A.
,
Saidur
,
R.
,
Mekhilef
,
S.
, and
Mahian
,
O.
,
2015
, “
Progress and Latest Developments of Evacuated Tube Solar Collectors
,”
Renewable Sustainable Energy Rev.
,
51
(
11
), pp.
1038
1054
. 10.1016/j.rser.2015.07.016
13.
Midilli
,
A.
, and
Kucuk
,
H.
,
2003
, “
Energy and Exergy Analyses of Solar Drying Process of Pistachio
,”
Energy
,
28
(
6
), pp.
539
556
. 10.1016/S0360-5442(02)00158-5
14.
Aghbashlo
,
M.
,
Kianmehr
,
M. H.
, and
Arabhosseini
,
A.
,
2008
, “
Energy and Exergy Analyses of Thin Layer Drying of Potato Slices in a Semi-Industrial Continuous Band Dryer
,”
Drying Technol.
,
26
(
12
), pp.
1501
1508
. 10.1080/07373930802412231
15.
Aviara
,
N. A.
,
Onuoha
,
L. N.
,
Falola
,
O. E.
, and
Igbeka
,
J. C.
,
2014
, “
Energy and Exergy Analyses of Native Cassava Starch Drying in a Tray Dryer
,”
Energy
,
73
(
10
), pp.
809
817
. 10.1016/j.energy.2014.06.087
16.
Erbay
,
Z.
, and
Icier
,
F.
,
2011
, “
Energy and Exergy Analyses on Drying of Olive Leaves (Olea Europaea L.) in Tray Drier
,”
J. Food Process Eng.
,
34
(
6
), pp.
2105
2123
. 10.1111/j.1745-4530.2009.00505.x
17.
Colak
,
N.
, and
Hepbasli
,
A.
,
2007
, “
Performance Analysis of Drying of Green Olive in a Tray Dryer
,”
J. Food Eng.
,
80
(
4
), pp.
1188
1193
. 10.1016/j.jfoodeng.2006.09.017
18.
Amjad
,
W.
,
Gilani
,
G. A.
,
Munir
,
A.
,
Asghar
,
F.
,
Ali
,
A.
, and
Waseem
,
M.
,
2019
, “
Energetic and Exergetic Thermal Analysis of an Inline-Airflow Solar Hybrid Dryer
,”
Appl. Therm. Eng.
,
166
(
3
), p.
114632
. 10.1016/j.applthermaleng.2019.114632
19.
Sundari
,
A. R. U.
,
Neelamegam
,
P.
, and
Subramanian
,
C. V.
,
2013
, “
An Experimental Study and Analysis on Solar Drying of Bitter Gourd Using an Evacuated Tube Air Collector in Thanjavur
,”
Tamil Nadu, India. Conference Papers in Energy Volume 2013
,
Article ID 125628
.
20.
Lamnatou
,
C.
,
Papanicolaou
,
E.
,
Belessiotis
,
V.
, and
Kyriakis
,
N.
,
2012
, “
Experimental Investigation and Thermodynamic Performance Analysis of a Solar Dryer Using an Evacuated-Tube air Collector
,”
Appl. Energy
,
94
(
6
), pp.
232
243
. 10.1016/j.apenergy.2012.01.025
21.
Hossain
,
M. A.
,
Amer
,
B. M. A.
, and
Gottschalk
,
K.
,
2008
, “
Hybrid Solar Dryer for Quality Dried Tomato
,”
Drying Technol.
,
26
(
12
), pp.
1591
1601
. 10.1080/07373930802467466
22.
Mujumdar
,
A. S.
,
1995
,
Handbook of Industrial Drying
, 2nd ed.,
Marcel Dekker
,
New York
.
23.
Aghbashlo
,
M.
,
Mobli
,
H.
,
Rafiee
,
S.
, and
Madadlou
,
A.
,
2013
, “
A Review on Exergy Analysis of Drying Processes and Systems
,”
Renewable Sustainable Energy Rev.
,
22
(
6
), pp.
1
22
. 10.1016/j.rser.2013.01.015
24.
Iqra
,
A.
,
Munir
,
A.
,
Amjad
,
W.
,
Ghafoor
,
A.
, and
Nasir
,
M. S.
,
2018
, “
Energy- and Exergy-Based[Q5] Thermal Analyses of a Solar Bakery Unit
,”
J. Therm. Anal. Calorim.
,
133
(
1
), pp.
1001
1013
. 10.1007/s10973-018-7165-3(0123456789
25.
Bagheri
,
H.
,
Arabhoseini
,
A.
, and
Kianmehr
,
M. H.
,
2015
, “
Energy and Exergy Analyses of Thin Layer Drying of Tomato in a Forced Solar Dryer
,”
Iranian J. Bio Systems Eng. (Iranian Journal of Agricultural Sciences)
,
46
(
1
), pp.
39
45
.
26.
Akbulut
,
A.
, and
Durmus
,
A.
,
2010
, “
Energy and Exergy Analyses of Thin Layer Drying of Mulberry in a Forced Solar Dryer
,”
Energy
,
35
(
4
), pp.
1754
1763
. 10.1016/j.energy.2009.12.028
27.
Akpinar
,
E. K.
,
2011
, “
Drying of Parsley Leaves in a Solar Dryer and Under Open sun: Modeling, Energy and Exergy Aspects
,”
J. Food Process Eng.
,
34
(
1
), pp.
27
48
. 10.1111/j.1745-4530.2008.00335.x
28.
Sevik
,
S.
,
Aktas
,
M.
,
Dolgun
,
E. C.
,
Arslan
,
E.
, and
Tuncer
,
A. D.
,
2019
, “
Performance Analysis of Solar and Solar-Infrared Dryer of Mint and Apple Slices Using Energy-Exergy Methodology
,”
Sol. Energy
,
180
(
1
), pp.
537
549
. 10.1016/j.solener.2019.01.049
29.
Ozgener
,
L.
, and
Ozgener
,
O.
,
2009
, “
Exergy Analysis of Drying Process: an Experimental Study in Solar Greenhouse
,”
Drying Technol.
,
27
(
4
), pp.
580
586
. 10.1080/07373930802716276
You do not currently have access to this content.