Abstract

Computational fluid dynamics (CFD) based thermal design of a transverse flow optical cavity is carried out for 1 kW Nd3+ POCl3 liquid laser source to investigate temperature and velocity distribution in the optical pumping region of the cavity. Temperature gradient and turbulence both affect the refractive index of the liquid gain medium, which results in optical path difference (OPD), divergence and hence, poorer quality of the laser beam. The main purpose of this design is to achieve uniform flow and least temperature gradient in the optical pumping region so that the optical path difference can be minimized and a good beam quality can be achieved. CFD model has been developed for carrying out thermo-fluid simulations for this thermal system and based on these simulations, an optimum geometry of inlet ports along with their position from optical pumping region have been proposed. A user defined function (UDF) is incorporated for the input of spatially varying heat source term in each cell of the optical pumping region of the cavity. Variations in refractive index and optical path difference are estimated from the temperature data using another UDF. Simulation reveals that mass flowrate between 1.5 kg/s and 2.0 kg/s maintains the optical homogeneity of gain medium. Preliminary experiments have been carried out to demonstrate the effect of flowrate on the beam divergence and thereby exhibiting the importance of present simulation work.

References

1.
Brecher
,
C.
, and
French
,
K. W.
,
1969
, “
Comparison of Aprotic Solvent for Nd3+ Liquid Laser Systems: Selenium Oxychloride and Phosphorus Oxychloride
,”
J. Phys. Chem.
,
73
(
6
), pp.
1785
1789
. 10.1021/j100726a026
2.
Hongyo
,
M.
,
Sasaki
,
T.
,
Nagao
,
Y.
,
Ueda
,
K.
, and
Yamanaka
,
C.
,
1972
, “
High Power Nd3+ POCl3 Liquid Laser System
,”
IEEE J. Quantum Electron.
,
QE-8
(
2
), pp.
192
196
. 10.1109/JQE.1972.1076916
3.
Lakshman
,
S. V. J.
, and
Moorthy
,
L. R.
,
1985
, “
Spectral Studies of Nd3+ and Er3+ Ions in POCl3: SnCl4 Laser Liquid
,”
Appl. Phys. A
,
38
(
4
), pp.
285
291
. 10.1007/BF00616065
4.
Yunxia
,
Y.
, and
Dianyuan
,
F.
,
2007
, “
Investigation of Neodymium Doped Organic Liquid Media for Laser Application
,”
Chinese Optics Lett.
,
5
(
S1
), pp.
33
35
.
5.
Kocher
,
R. C.
, and
Samelson
,
H.
,
1972
, “
Cell for Use in Circulating Liquid Laser
”, U.S. Patent US 3,663,891.
6.
Ault
,
E. R.
,
Comaskey
,
B. J.
, and
Kulko
,
T. C.
,
2003
, “
High Average Power Laser Using a Transverse Flowing Liquid Host
,” U.S. Patent, US 6,600,766 B1.
7.
Luo
,
G.
,
Chaoqi
,
H.
,
Bo
,
P.
, and
Dianyuan
,
F.
,
2010
, “
A New Fluid State Laser System Realizes Laser Output
,”
Proc. SPIE
,
7843
, p.
78431I
. 10.1117/12.870197
8.
Hou
,
C.
,
Guo
,
H.
,
She
,
J.
,
Cui
,
X.
,
Qiao
,
Z.
,
Gao
,
F.
,
Lu
,
M.
,
Wei
,
W.
, and
Peng
,
B.
,
2012
, “
A Neodymium Fluid Laser: Laser Emission in Circulating State
,”
Optics Laser Technol.
,
44
(
5
), pp.
1633
1635
. 10.1016/j.optlastec.2011.12.047
9.
Fu
,
X.
,
Liu
,
Q.
,
Li
,
P.
, and
Gong
,
M.
,
2013
, “
Direct-liquid Cooled Nd:YAG Thin Disk Laser Oscillator
,”
Appl. Phys. B
,
111
(
3
), pp.
517
521
. 10.1007/s00340-013-5366-9
10.
Singh
,
N.
,
Kumar
,
A.
, and
Vora
,
H. S.
,
2014
, “
A Study of Flow Characteristics of a High Repetition Rate Dye Laser Gain Medium
,”
Laser Phys.
,
24
(
2
), pp.
1
6
.
11.
Varshney
,
A. K.
,
Verma
,
A. C.
,
Singhal
,
G.
,
Siddique
, ,
M.
, and
Tyagi
,
R. K.
,
2017
, “Modelling of a Transversely Pumped Aprotic Liquid Laser,”
Advances in Optical Science and Engineering
, Vol.
194
,
I.
Bhattacharya
, ed.,
Springer Proceedings in Physics
,
US
, pp.
241
248
.
12.
Singh
,
V. K.
,
Verma
,
A. C.
,
Veerendra
,
Varshney
,
A. K.
,
Singhal
,
G.
, and
Tyagi
,
R. K.
,
2017
, “
Computational Fluid Dynamic and Heat Transfer Analysis of Longitudinal and Transverse Flow Liquid Laser Cavity
,”
18th ISME Conference
,
NIT Warangal
,
Feb. 23–25
.
13.
ANSYS Fluent Theory Guide 15
.
ANSYS Inc.
,
2013
.
14.
Mulvany
,
N. J.
,
Chen
,
L.
,
Tu
,
J. Y.
, and
Anderson
,
B.
,
2004
, “
Steady-State Evaluation of Two-Equation RANS (Reynolds-Averaged Navier-Stokes) Turbulence Models for High-Reynolds Number Hydrodynamic Flow Simulations
DSTO-TR-1564, DSTO Platform Science Laboratory, Australia
, https://www.semanticscholar.org/paper/Steady-State-Evaluation-of-Two- Equation-RANS-Models-Mulvany-Chen/ccfd2b6e5f2c7cec02a1c75ce6f0c23c2d682524.
15.
Foster
,
J. D.
, and
Kirk
,
R. F.
,
1971
, “
Neodymium Aprotic Liquid Laser
,”
Final Technical Report AFAL-TR-71-122, Contract No. F33615-70-C-1415
,
WPAFB, OH
,
Air Force Avionics Laboratory
, https://www.osti.gov/biblio/7112830.
You do not currently have access to this content.