Abstract

This paper presents a steady-state heat transfer model for the natural convection of mixed Newtonian-Non-Newtonian (Alumina-water) and pure non-Newtonian (Alumina-0.5 wt% Carboxymethyl Cellulose (CMC)/water) nanofluids in a square enclosure with adiabatic horizontal walls and isothermal vertical walls, the left wall being hot and the right wall cold. In the first case, the nanofluid changes its Newtonian character to non-Newtonian past 2.78% volume fraction of the nanoparticles. In the second case, the base fluid itself is non-Newtonian and the nanofluid behaves as a pure non-Newtonian fluid. The power-law viscosity model has been adopted for the non-Newtonian nanofluids. A finite-difference based numerical study with the Stream function-Vorticity-Temperature formulation has been carried out. The homogeneous flow model has been used for modeling the nanofluids. The present results have been extensively validated with earlier works. In Case I, the results indicate that Alumina-water nanofluid shows 4% enhancement in heat transfer at 2.78% nanoparticle concentration. Following that there is a sharp decline in heat transfer with respect to that in base fluid for nanoparticle volume fractions equal to and greater than 3%. In Case II, Alumina-CMC/water nanofluid shows 17% deterioration in heat transfer with respect to that in base fluid at 1.5% nanoparticle concentration. An enhancement in heat transfer is observed for increase in hot wall temperature at a fixed volume fraction of nanoparticles, for both types of nanofluid.

References

1.
Choi
,
S. U. S.
, and
Eastman
,
J. A.
,
1995
, “
Enhancing Thermal Conductivity of Fluids With Nanoparticles
,”
ASME Int. Mech. Eng. Congr. Expo.
,
Nov. 12–17, 1995
,
San Francisco, CA
.
2.
Kim
,
S. J.
,
Bang
,
I. C.
,
Buongiorno
,
J.
, and
Hu
,
L. W.
,
2007
, “
Surface Wettability Change During Pool Boiling of Nanofluids and Its Effect on Critical Heat Flux
,”
Int. J. Heat Mass Transf.
,
50
(
19–20
), pp.
4105
4116
. 10.1016/j.ijheatmasstransfer.2007.02.002
3.
Lee
,
S.
,
Choi
,
S. U.-S.
,
Li
,
S.
, and
Eastman
,
J. A.
,
1999
, “
Measuring Thermal Conductivity of Fluids Containing Oxide Nanoparticles
,”
ASME J. Heat Transfer
,
121
(
2
), pp.
280
289
. 10.1115/1.2825978
4.
Hamilton
,
R. L.
, and
Crosser
,
O. K.
,
1962
, “
Thermal Conductivity of Heterogeneous Two-Component Systems
,”
Ind. Eng. Chem. Fundam.
,
1
(
3
), pp.
187
191
. 10.1021/i160003a005
5.
Xuan
,
Y.
, and
Roetzel
,
W.
,
2000
, “
Conception for Heat Transfer Correlation of Nanofluid
,”
Int. J. Heat Mass Transf.
,
43
(
19
), pp.
3701
3707
. 10.1016/S0017-9310(99)00369-5
6.
Das
,
S. K.
,
Choi
,
S. U. S.
, and
Patel
,
H. E.
,
2006
, “
Heat Transfer in Nanofluids—A Review
,”
Heat Transf. Eng.
,
27
(
10
), pp.
3
19
. 10.1080/01457630600904593
7.
Wang
,
X.
,
Xu
,
X.
,
Choi
,
S.
, and
U
,
S.
,
1999
, “
Thermal Conductivity of Nanoparticle—Fluid Mixture
,”
J. Thermophys. Heat Transf.
,
13
(
4
), pp.
474
480
. 10.2514/2.6486
8.
Buongiorno
,
J.
,
2006
, “
Convective Transport in Nanofluids
,”
ASME J. Heat Transfer
,
128
(
3
), pp.
240
250
. 10.1115/1.2150834
9.
Buongiorno
,
J.
,
Venerus
,
D. C.
,
Prabhat
,
N.
,
McKrell
,
T.
,
Townsend
,
J.
,
Christianson
,
R.
,
Tolmachev
,
Y. V.
,
Keblinski
,
P.
,
Hu
,
L.
,
Alvarado
,
J. L.
,
Bang
,
I. C.
,
Bishnoi
,
S. W.
,
Bonetti
,
M.
,
Botz
,
F.
,
Cecere
,
A.
,
Chang
,
Y.
,
Chen
,
G.
,
Chen
,
H.
,
Chung
,
S. J.
,
Chyu
,
M. K.
,
Das
,
S. K.
,
Di Paola
,
R.
,
Ding
,
Y.
,
Dubois
,
F.
,
Dzido
,
G.
,
Eapen
,
J.
,
Escher
,
W.
,
Funfschilling
,
D.
,
Galand
,
Q.
,
Gao
,
J.
,
Gharagozloo
,
P. E.
,
Goodson
,
K. E.
,
Gutierrez
,
J. G.
,
Hong
,
H.
,
Horton
,
M.
,
Hwang
,
K. S.
,
Iorio
,
C. S.
,
Jang
,
S. P.
,
Jarzebski
,
A. B.
,
Jiang
,
Y.
,
Jin
,
L.
,
Kabelac
,
S.
,
Kamath
,
A.
,
Kedzierski
,
M. A.
,
Kieng
,
L. G.
,
Kim
,
C.
,
Kim
,
J.-H.
,
Kim
,
S.
,
Lee
,
S. H.
,
Leong
,
K. C.
,
Manna
,
I.
,
Michel
,
B.
,
Ni
,
R.
,
Patel
,
H. E.
,
Philip
,
J.
,
Poulikakos
,
D.
,
Reynaud
,
C.
,
Savino
,
R.
,
Singh
,
P. K.
,
Song
,
P.
,
Sundararajan
,
T.
,
Timofeeva
,
E.
,
Tritcak
,
T.
,
Turanov
,
A. N.
,
Van Vaerenbergh
,
S.
,
Wen
,
D.
,
Witharana
,
S.
,
Yang
,
C.
,
Yeh
,
W. H.
,
Zhao
,
X. Z.
, and
Zhou
,
S. Q.
,
2009
, “
A Benchmark Study on the Thermal Conductivity of Nanofluids
,”
J. Appl. Phys.
,
106
, p.
094312
. 10.1063/1.3245330
10.
Crochet
,
M. J.
, and
Walters
,
K.
,
1983
, “
Numerical Methods in Non-Newtonian Fluid Mechanics
,”
Annu. Rev. Fluid Mech.
,
15
(
1
), pp.
241
260
. 10.1146/annurev.fl.15.010183.001325
11.
Benchabane
,
A.
, and
Bekkour
,
K.
,
2008
, “
Rheological Properties of Carboxymethyl Cellulose (CMC) Solutions
,”
Colloid Polym. Sci.
,
286
(
10
), pp.
1173
1180
. 10.1007/s00396-008-1882-2
12.
Hojjat
,
M.
,
Etemad
,
S. G.
,
Bagheri
,
R.
, and
Thibault
,
J.
,
2011
, “
Rheological Characteristics of Non-Newtonian Nanofluids: Experimental Investigation
,”
Int. Commun. Heat Mass Transf.
,
38
(
2
), pp.
144
148
. 10.1016/j.icheatmasstransfer.2010.11.019
13.
De Vahl Davis
,
G.
,
1983
, “
Natural Convection of Air in a Square Cavity: A Bench Mark Numerical Solution
,”
Int. J. Numer. Methods Fluids
,
3
(
3
), pp.
249
264
. 10.1002/fld.1650030305
14.
Ravi
,
M. R.
,
Henkes
,
R. A. W. M.
, and
Hoogendoorn
,
C. J.
,
1994
, “
On the High-Rayleigh-Number Structure of Steady Laminar Natural-Convection Flow in a Square Enclosure
,”
J. Fluid Mech.
,
262
(
1
), pp.
325
351
. 10.1017/S0022112094000522
15.
Kefayati
,
G. H. R.
,
2015
, “
FDLBM Simulation of Entropy Generation Due to Natural Convection in an Enclosure Filled With Non-Newtonian Nanofluid
,”
Powder Technol.
,
273
, pp.
176
190
. 10.1016/j.powtec.2014.12.042
16.
Pak
,
B. C.
, and
Cho
,
Y. I.
,
1998
, “
Hydrdynamic and Heat Transfer Study of Dispersed Fluids With Submicron Metallic Oxide Particles
,”
Exp. Heat Transf.
,
11
(
2
), pp.
151
170
. 10.1080/08916159808946559
17.
Ho
,
C. J.
,
Chen
,
M. W.
, and
Li
,
Z. W.
,
2008
, “
Numerical Simulation of Natural Convection of Nanofluid in a Square Enclosure: Effects Due to Uncertainties of Viscosity and Thermal Conductivity
,”
Int. J. Heat Mass Transf.
,
51
(
17–18
), pp.
4506
4516
. 10.1016/j.ijheatmasstransfer.2007.12.019
18.
Hu
,
Y.
,
He
,
Y.
,
Qi
,
C.
,
Jiang
,
B.
, and
Inaki Schlaberg
,
H.
,
2014
, “
Experimental and Numerical Study of Natural Convection in a Square Enclosure Filled With Nanofluid
,”
Int. J. Heat Mass Transf.
,
78
, pp.
380
392
. 10.1016/j.ijheatmasstransfer.2014.07.001
19.
Choi
,
S.-K.
,
Kim
,
S.-O.
, and
Lee
,
T.-H.
,
2014
, “
Computation of the Natural Convection of Nanofluid in a Square Cavity With Homogeneous and Nonhomogeneous Models
,”
Numer. Heat Transfer, Part A
,
65
(
4
), pp.
287
301
. 10.1080/10407782.2013.831695
20.
Alloui
,
Z.
, and
Vasseur
,
P.
,
2015
, “
Natural Convection of Carreau–Yasuda Non-Newtonian Fluids in a Vertical Cavity Heated From the Sides
,”
Int. J. Heat Mass Transf.
,
84
, pp.
912
924
. 10.1016/j.ijheatmasstransfer.2015.01.092
21.
Bin Kim
,
G.
,
Min Hyun
,
J.
, and
Sang Kwak
,
H.
,
2003
, “
Transient Buoyant Convection of a Power-Law Non-Newtonian Fluid in an Enclosure
,”
Int. J. Heat Mass Transf.
,
46
(
19
), pp.
3605
3617
. 10.1016/S0017-9310(03)00149-2
22.
Turan
,
O.
,
Sachdeva
,
A.
,
Chakraborty
,
N.
, and
Poole
,
R. J.
,
2011
, “
Laminar Natural Convection of Power-Law Fluids in a Square Enclosure With Differentially Heated Side Walls Subjected to Constant Temperatures
,”
J. Nonnewton. Fluid Mech.
,
166
(
17–18
), pp.
1049
1063
. 10.1016/j.jnnfm.2011.06.003
23.
Dale
,
J. D.
, and
Emery
,
A. F.
,
1972
, “
The Free Convection of Heat from a Vertical Plate to Several Non-Newtonian “Pseudoplastic” Fluids
,”
ASME J. Heat Transfer
,
94
(
1
), pp.
64
72
.10.1115/1.3449874
24.
Ahmadi
,
M. H.
,
Mirlohi
,
A.
,
Nazari
,
M. A.
, and
Ghasempour
,
R.
,
2018
, “
A Review of Thermal Conductivity of Various Nanofluids
,”
J. Mol. Liq.
,
265
, pp.
181
188
. 10.1016/j.molliq.2018.05.124
25.
Bashirnezhad
,
K.
,
Bazri
,
S.
,
Safaei
,
M. R.
,
Goodarzi
,
M.
,
Dahari
,
M.
,
Mahian
,
O.
,
Dalkilica
,
A. S.
, and
Wongwises
,
S.
,
2016
, “
Viscosity of Nanofluids: A Review of Recent Experimental Studies
,”
Int. Commun. Heat Mass Transfer
,
73
, pp.
114
123
. 10.1016/j.icheatmasstransfer.2016.02.005
26.
Otanicar
,
T. P.
,
Phelan
,
P. E.
,
Prasher
,
R. S.
,
Rosengarten
,
G.
, and
Taylor
,
R. A.
,
2010
, “
Nanofluid-Based Direct Absorption Solar Collector
,”
J. Renew. Sustain. Energy
,
2
(
3
), p.
033102
. 10.1063/1.3429737
27.
Gnanadason
,
M. K.
,
Kumar
,
P. S.
,
Rajakumar
,
S.
, and
Yousuf
,
M. H. S.
,
2011
, “
Effect of Nanofluids in a Vacuum Single Basin Solar Still
,”
Int. J. Adv. Eng. Res. Stud.
,
1
(
1
), pp.
171
177
.
28.
Ma
,
H. B.
,
Wilson
,
C.
,
Borgmeyer
,
B.
,
Park
,
K.
,
Yu
,
Q.
,
Choi
,
S. U. S.
, and
Tirumala
,
M.
,
2006
, “
Effect of Nanofluid on the Heat Transport Capability in an Oscillating Heat Pipe
,”
Appl. Phys. Lett.
,
88
(
14
), p.
143116
. 10.1063/1.2192971
29.
Ma
,
H. B.
,
Wilson
,
C.
,
Yu
,
Q.
,
Park
,
K.
,
Choi
,
U. S.
, and
Tirumala
,
M.
,
2006
, “
An Experimental Investigation of Heat Transport Capability in a Nanofluid Oscillating Heat Pipe
,”
ASME J. Heat Transfer
,
128
(
11
), pp.
1213
1216
. 10.1115/1.2352789
30.
Chhabra
,
R. P.
, and
Richarson
,
J. F.
,
2008
,
Non-Newtonian Flow and Applied Rheology: Engineering Applications
,
Butterworth-Heinemann
,
UK
.
31.
Ghoshdastidar
,
P. S.
,
2012
,
Heat Transfer
, 2nd ed.,
Oxford University Press
,
New Delhi, India
.
32.
Maxwell
,
J. C.
,
1883
,
A Treatise on Electricity and Magnetism
,
Cambridge University Press
,
Cambridge, UK
.
33.
Brinkman
,
H. C.
,
1952
, “
The Viscosity of Concentrated Suspensions and Solutions
,”
J. Chem. Phys.
,
20
(
4
), pp.
571
571
. 10.1063/1.1700493
You do not currently have access to this content.