Abstract

In the past two decades, the development of sustainable refrigeration systems such as thermally operated vapor adsorption refrigeration systems achieved unparalleled growth in the research world as compared to conventional vapor compression systems and even thermally operated vapor absorption refrigeration system. Yet, the commercial success of the adsorption refrigeration system could not be achieved due to mainly its higher space area required per kilowatts of refrigeration capacity. With the focus to look improvement on this issue, the performance of the adsorption refrigeration system has been studied concerning adsorption/desorption time and heat transfer of adsorber. It is proposed to reduce the adsorption/desorption time, due to which the concentration (ratio of the mass of adsorbed refrigerant to the mass of activated carbon) will not reach its equilibrium value, but it is possible to get a higher mass flow in a shorter period. In turn, the cooling capacity will increase. In view of this, a mathematical model has been developed to study the performance and applied to three adsorbent–adsorbate pairs, namely, Maxsorb III–ethanol, Maxsorb III–R507a, and Maxsorb III–R134a. Based on the mathematical investigations, it is observed that the cooling capacity can be improved significantly at a litter higher cost of the heat transfer mechanism.

References

1.
Negrão
,
C. O. R.
, and
Hermes
,
C. J. L.
,
2011
, “
Energy and Cost Savings in Household Refrigerating Appliances: A Simulation-Based Design Approach
,”
Appl. Energy
,
88
(
9
), pp.
3051
3060
. 10.1016/j.apenergy.2011.03.013
2.
Benhadid-Dib
,
S.
, and
Benzaoui
,
A.
,
2012
, “
Refrigerants and Their Environmental Impact Substitution of Hydro Chlorofluorocarbon HCFC and HFC Hydro Fluorocarbon. Search for an Adequate Refrigerant
,”
Energy Procedia
,
18
, pp.
807
816
. 10.1016/j.egypro.2012.05.096
3.
Fong
,
K. F.
,
Chow
,
T. T.
,
Lee
,
C. K.
,
Lin
,
Z.
, and
Chan
,
L. S.
,
2010
, “
Comparative Study of Different Solar Cooling Systems for Buildings in Subtropical City
,”
Sol. Energy
,
84
(
2
), pp.
227
244
. 10.1016/j.solener.2009.11.002
4.
Hassan
,
H. Z.
, and
Mohamad
,
A. A.
,
2012
, “
A Review on Solar-Powered Closed Physisorption Cooling Systems
,”
Renew. Sustain. Energy Rev.
,
16
(
5
), pp.
2516
2538
. 10.1016/j.rser.2012.02.068
5.
Reddy Panyam
,
V.
, and
Banker
,
N. D.
,
2017
, “
Thermodynamic Assessment of a Gas Turbine Power Plant Integrated With an Adsorption Refrigeration System
,”
Appl. Therm. Eng.
,
117
, pp.
577
583
. 10.1016/j.applthermaleng.2017.02.034
6.
Wang
,
K.
, and
Vineyard
,
E.
,
2011
, “
Adsorption Refrigeration: New Opportunities for Solar
,”
ASHRAE J.
,
53
(
9
), pp.
14
24
.
7.
Solmuş
,
I.
,
Yamali
,
C.
,
Kaftanoǧlu
,
B.
,
Baker
,
D.
, and
Çaǧlar
,
A.
,
2010
, “
Adsorption Properties of a Natural Zeolite-Water Pair for Use in Adsorption Cooling Cycles
,”
Appl. Energy
,
87
(
6
), pp.
2062
2067
. 10.1016/j.apenergy.2009.11.027
8.
Ji
,
X.
,
Li
,
M.
,
Fan
,
J.
,
Zhang
,
P.
,
Luo
,
B.
, and
Wang
,
L.
,
2014
, “
Structure Optimization and Performance Experiments of a Solar-Powered Finned-Tube Adsorption Refrigeration System
,”
Appl. Energy
,
113
, pp.
1293
1300
. 10.1016/j.apenergy.2013.08.088
9.
Banker
,
N. D.
,
Srinivasan
,
K.
, and
Prasad
,
M.
,
2004
, “
Performance Analysis of Activated Carbon + HFC-134a Adsorption Coolers
,”
Carbon N. Y.
,
42
(
1
), pp.
117
127
. 10.1016/j.carbon.2003.10.006
10.
Saha
,
B. B.
,
El-Sharkawy
,
I. I.
,
Chakraborty
,
A.
, and
Koyama
,
S.
,
2007
, “
Study on an Activated Carbon Fiber-Ethanol Adsorption Chiller: Part I—System Description and Modelling
,”
Int. J. Refrig.
,
30
(
1
), pp.
86
95
. 10.1016/j.ijrefrig.2006.08.004
11.
Douss
,
N.
,
Meunier
,
F. E.
, and
Sun
,
L. M.
,
1988
, “
Predictive Model and Experimental Results for a Two-Adsorber Solid Adsorption Heat Pump
,”
Ind. Eng. Chem. Res.
,
27
(
2
), pp.
310
316
. 10.1021/ie00074a017
12.
El-Sharkawy
,
I. I.
,
Saha
,
B. B.
,
Koyama
,
S.
,
He
,
J.
,
Ng
,
K. C.
, and
Yap
,
C.
,
2008
, “
Experimental Investigation on Activated Carbon–Ethanol Pair for Solar Powered Adsorption Cooling Applications
,”
Int. J. Refrig.
,
31
(
8
), pp.
1407
1413
. 10.1016/j.ijrefrig.2008.03.012
13.
Saha
,
B. B.
,
El-Sharkawy
,
I. I.
,
Thorpe
,
R.
, and
Critoph
,
R. E.
,
2012
, “
Accurate Adsorption Isotherms of R134a Onto Activated Carbons for Cooling and Freezing Applications
,”
Int. J. Refrig.
,
35
(
3
), pp.
499
505
. 10.1016/j.ijrefrig.2011.05.002
14.
Baiju
,
V.
, and
Muraleedharan
,
C.
,
2015
, “
Experimental Analysis on Adsorption Characteristics of Methanol and R134a by Activated Carbon in Adsorption Refrigeration System
,”
ASME J. Therm. Sci. Eng. Appl.
,
7
(
1
). 10.1115/1.4028548
15.
Habib
,
K.
,
Saha
,
B. B.
,
Rahman
,
K. A.
,
Chakraborty
,
A.
,
Koyama
,
S.
, and
Ng
,
K. C.
,
2010
, “
Experimental Study on Adsorption Kinetics of Activated Carbon/R134a and Activated Carbon/R507A Pairs
,”
Int. J. Refrig.
,
33
(
4
), pp.
706
713
. 10.1016/j.ijrefrig.2010.01.006
16.
Crank
,
J.
,
1979
,
The Mathematics of Diffusion
,
Oxford University Press
,
London
.
17.
El-Sharkawy
,
I. I.
,
Uddin
,
K.
,
Miyazaki
,
T.
,
Saha
,
B. B.
,
Koyama
,
S.
,
Miyawaki
,
J.
, and
Yoon
,
S.-H.
,
2014
, “
Adsorption of Ethanol Onto Parent and Surface Treated Activated Carbon Powders
,”
Int. J. Heat Mass Transf.
,
73
, pp.
445
455
. 10.1016/j.ijheatmasstransfer.2014.02.046
18.
Uddin
,
K.
,
El-Sharkawy
,
I. I.
,
Miyazaki
,
T.
,
Saha
,
B. B.
, and
Koyama
,
S.
,
2014
, “
Thermodynamic Analysis of Adsorption Refrigeration Cycles Using Parent and Surface Treated Maxsorb III/Ethanol Pairs
,”
15th International Refrigeration and Air Conditioning Conference
,
Purdue, West Lafayette, IN
,
July 14–17
.
19.
Uddin
,
M. D.
,
2014
,
PhD Thesis, Department of Energy and Environmental Engineering, Kyushu University, Japan
.
20.
Akkimaradi
,
B. S.
,
Prasad
,
M.
,
Dutta
,
P.
, and
Srinivasan
,
K.
,
2002
, “
Effect of Packing Density and Adsorption Parameters on the Throughput of a Thermal Compressor
,”
Carbon N. Y.
,
40
(
15
), pp.
2855
2859
. 10.1016/S0008-6223(02)00218-X
21.
Saha
,
B. B.
,
Chakraborty
,
A.
,
Koyama
,
S.
,
Yoon
,
S. H.
,
Mochida
,
I.
,
Kumja
,
M.
, and
Yap
,
C.
,
2008
, “
Isotherms and Thermodynamics for the Adsorption of N-Butane on Pitch Based Activated Carbon
,”
Int. J. Heat Mass Transf.
,
51
(
7–8
), pp.
1582
1589
. 10.1016/j.ijheatmasstransfer.2007.07.031
22.
Panyam
,
V. R.
,
Kolla
,
V. S.
,
Palawat
,
L.
,
Sahu
,
A.
, and
Banker
,
N. D.
,
2018
, “
Performance Comparison of a Vapor-Adsorption Cycle-Based Gas Turbine Inlet Air Cooling System for Different Refrigerants
,”
Int. J. Air-Conditioning Refrig.
,
26
(
1
), p.
1850002
. 10.1142/S2010132518500025
23.
Al-Mousawi
,
F. N.
,
Al-Dadah
,
R.
, and
Mahmoud
,
S.
,
2016
, “
Low Grade Heat Driven Adsorption System for Cooling and Power Generation With Small-Scale Radial Inflow Turbine
,”
Appl. Energy
,
183
, pp.
1302
1316
. 10.1016/j.apenergy.2016.09.061
24.
Critoph
,
R. E.
,
1996
, “
Evaluation of Alternative Refrigerant-Adsorbent Pairs for Refrigeration Cycles
,”
Appl. Therm. Eng.
,
16
(
11
), pp.
891
900
. 10.1016/1359-4311(96)00008-7
25.
El-Sharkawy
,
I. I.
,
Hassan
,
M.
,
Saha
,
B. B.
,
Koyama
,
S.
, and
Nasr
,
M. M.
,
2009
, “
Study on Adsorption of Methanol Onto Carbon Based Adsorbents
,”
Int. J. Refrig.
,
32
(
7
), pp.
1579
1586
. 10.1016/j.ijrefrig.2009.06.011
26.
Henninger
,
S. K.
,
Schmidt
,
F. P.
, and
Henning
,
H. M.
,
2010
, “
Water Adsorption Characteristics of Novel Materials for Heat Transformation Applications
,”
Appl. Therm. Eng.
,
30
(
13
), pp.
1692
1702
. 10.1016/j.applthermaleng.2010.03.028
27.
Akkimaradi
,
B. S.
,
Prasad
,
M.
,
Dutta
,
P.
, and
Srinivasan
,
K.
,
2001
, “
Adsorption of 1,1,1,2-Tetrafluoroethane on Activated Charcoal
,”
J. Chem. Eng. Data
,
46
(
2
), pp.
417
422
. 10.1021/je000277e
28.
Dubinin
,
M. M.
,
1967
, “
Adsorption in Micropores
,”
J. Colloid Interface Sci.
,
23
(
4
), pp.
487
499
. 10.1016/0021-9797(67)90195-6
29.
Dubinin
,
M. M.
, and
Astakhov
,
V. A.
,
1971
, “
Development of the Concepts of Volume Filling of Micropores in the Adsorption of Gases and Vapors by Microporous Adsorbents—Communication 1. Carbon Adsorbents
,”
Bull. Acad. Sci. USSR Div. Chem. Sci.
,
20
(
1
), pp.
3
7
. 10.1007/BF00849307
30.
Bankar
,
N. D.
,
2006
,
Development of an Activated Carbon+ HFC 134a Adsorption Refrigeration System
,
Indian Institute of Science
,
Bangalore
.
31.
Banker
,
N. D.
,
Prasad
,
M.
,
Dutta
,
P.
, and
Srinivasan
,
K.
,
2010
, “
Development and Transient Performance Results of a Single Stage Activated Carbon—HFC 134a Closed Cycle Adsorption Cooling System
,”
Appl. Therm. Eng.
,
30
(
10
), pp.
1126
1132
. 10.1016/j.applthermaleng.2010.01.027
32.
Cengel
,
A.
, and
Ghajar
,
A.
,
2015
,
Heat and Mass Transfer, Fundamentals & Application
, 5th ed.,
McGraw-Hill Education
,
Noida, India
.
33.
Saha
,
B. B.
,
Koyama
,
S.
,
El-Sharkawy
,
I. I.
,
Kuwahara
,
K.
,
Kariya
,
K.
, and
Ng
,
K. C.
,
2006
, “
Experiments for Measuring Adsorption Characteristics of an Activated Carbon Fiber/Ethanol Pair Using a Plate-Fin Heat Exchanger
,”
HVAC R Res.
,
12
, pp.
767
782
. 10.1080/10789669.2006.10391206
34.
Ruthven
,
D. M.
,
1984
,
Principles of Adsorption and Adsorption Processes
,
John Wiley & Sons
,
Canada
.
35.
El-Sharkawy
,
I. I.
,
Saha
,
B. B.
,
Koyama
,
S.
, and
Srinivasan
,
K.
,
2007
, “
Isosteric Heats of Adsorption Extracted From Experiments of Ethanol and HFC 134a on Carbon Based Adsorbents
,”
Int. J. Heat Mass Transf.
,
50
(
5–6
), pp.
902
907
. 10.1016/j.ijheatmasstransfer.2006.08.036
36.
Habib
,
K.
,
Saha
,
B. B.
,
Chakraborty
,
A.
,
Koyama
,
S.
, and
Srinivasan
,
K.
,
2011
, “
Performance Evaluation of Combined Adsorption Refrigeration Cycles
,”
Int. J. Refrig.
,
34
(
1
), pp.
129
137
. 10.1016/j.ijrefrig.2010.09.005
37.
Banker
,
N. D.
,
Dandotiya
,
D.
,
Morthala
,
S. V. R.
,
Gaddam
,
M.
, and
Kakileti
,
S.
,
2020
, “
Evaluation of Minimum, Maximum and Optimum Source Temperature for Solar-Powered Adsorption Refrigeration System
,”
Arab. J. Sci. Eng.
,
45
(
11
), pp.
9735
9745
. 10.1007/s13369-020-04865-0
38.
Banker
,
N. D.
,
Dutta
,
P.
,
Prasad
,
M.
, and
Srinivasan
,
K.
,
2008
, “
Performance Studies on Mechanical + Adsorption Hybrid Compression Refrigeration Cycles With HFC 134a
,”
Int. J. Refrig.
,
31
(
8
), pp.
1398
1406
. 10.1016/j.ijrefrig.2008.03.009
You do not currently have access to this content.