Abstract

In order to understand the heat transfer performance, startup, and fluid flow conditions of oscillating heat pipes (OHPs) with a hydraulic diameter far exceeding the maximum hydraulic diameter (MHD) defined by dh,max2σBo/(ρlρv)g, an experimental investigation on the OHP heat transfer performance and visualization was conducted. The effects of heat input, working fluid, and orientation on the oscillating motion and heat transfer performance of the investigated OHPs have been conducted. In addition, the detailed flow patterns of the tested OHPs were recorded by a high-speed camera from both vertical and horizontal orientations. Results show that the maximum hydraulic diameter, which can form a train of liquid plugs and vapor bubbles, which is essential for an OHP to function, depends on the heat input, working fluid, and orientation. At a power input of 1000 W, the OHP can still function well even when the tube diameter exceeds the MHD of 91.6%. This maximum hydraulic dimeter depends on the orientation. While the OHP with a dimeter far exceeding the MHD can still function, the heat transfer performance of the OHP in a vertical orientation is better than in a horizontal orientation.

References

1.
Akachi
,
H.
,
Polasek
,
F.
, and
Stulc
,
P.
,
1996
, “
Pulsating Heat Pipes
,”
International Heat Pipe Symposium
,
Melbourne, VIC
,
Nov. 17–20
, pp.
208
217
.
2.
Akachi
,
H.
,
1990
, “
Structure of a Heat Pipe
,” U.S. Patent No. 4,921,041.
3.
Zhang
,
Y.
, and
Faghri
,
A.
,
2008
, “
Advances and Unsolved Issues in Pulsating Heat Pipes
,”
Heat Transfer Eng.
,
29
(
1
), pp.
20
44
. 10.1080/01457630701677114
4.
Yang
,
H.
,
Khandekar
,
S.
, and
Groll
,
M.
,
2008
, “
Operational Limit of Closed Loop Pulsating Heat Pipes
,”
Appl. Therm. Eng.
,
28
(
1
), pp.
49
59
. 10.1016/j.applthermaleng.2007.01.033
5.
Charoensawan
,
P.
,
Khandekar
,
S.
,
Groll
,
M.
, and
Terdtoon
,
P.
,
2003
, “
Closed Loop Pulsating Heat Pipes: Part A: Parametric Experimental Investigations
,”
Appl. Therm. Eng.
,
23
(
16
), pp.
2009
2020
. 10.1016/S1359-4311(03)00159-5
6.
Qu
,
J.
, and
Wang
,
Q.
,
2013
, “
Experimental Study on the Thermal Performance of Vertical Closed-Loop Oscillating Heat Pipes and Correlation Modeling
,”
Appl. Energy
,
112
, pp.
1154
1160
. 10.1016/j.apenergy.2013.02.030
7.
Rittidech
,
S.
,
Terdtoon
,
P.
,
Murakami
,
M.
,
Kamonpet
,
P.
, and
Jompakdee
,
W.
,
2003
, “
Correlation to Predict Heat Transfer Characteristics of a Closed-end Oscillating Heat Pipe at Normal Operating Condition
,”
Appl. Therm. Eng.
,
23
(
4
), pp.
497
510
. 10.1016/S1359-4311(02)00215-6
8.
Shafii
,
M. B.
,
Faghri
,
A.
, and
Zhang
,
Y.
,
2001
, “
Thermal Modeling of Unlooped and Looped Pulsating Heat Pipes
,”
ASME J. Heat Transfer
,
123
(
6
), pp.
1159
1172
. 10.1115/1.1409266
9.
Shafii
,
M. B.
,
Faghri
,
A.
, and
Zhang
,
Y.
,
2002
, “
Analysis of Heat Transfer in Unlooped and Looped Pulsating Heat Pipes
,”
Int. J. Numer. Methods Heat Fluid Flow
,
12
(
5
), pp.
585
609
. 10.1108/09615530210434304
10.
Khandekar
,
S.
,
Charoensawan
,
P.
,
Groll
,
M.
, and
Terdtoon
,
P.
,
2003
, “
Closed Loop Pulsating Heat Pipes Part B: Visualization and Semi-Empirical Modeling
,”
Appl. Therm. Eng.
,
23
(
16
), pp.
2021
2033
. 10.1016/S1359-4311(03)00168-6
11.
Xu
,
J. L.
,
Li
,
Y. X.
, and
Wong
,
T. N.
,
2005
, “
High Speed Flow Visualization of a Closed Loop Pulsating Heat Pipe
,”
Int. J. Heat Mass Transfer
,
48
(
16
), pp.
3338
3351
. 10.1016/j.ijheatmasstransfer.2005.02.034
12.
Kim
,
J. S.
,
Bui
,
N. H.
,
Kim
,
J. W.
,
Kim
,
J. H.
, and
Jung
,
H. S.
,
2003
, “
Flow Visualization of Oscillation Characteristics of Liquid and Vapor Flow in the Oscillating Capillary Tube Heat Pipe
,”
KSME Int. J.
,
17
(
10
), pp.
1507
1519
. 10.1007/BF02982330
13.
Tong
,
B. Y.
,
Wong
,
T. N.
, and
Ooi
,
K. T.
,
2001
, “
Closed-Loop Pulsating Heat Pipe
,”
Appl. Therm. Eng.
,
21
(
18
), pp.
1845
1862
. 10.1016/S1359-4311(01)00063-1
14.
Li
,
J. M.
, and
Wang
,
B. X.
,
2003
, “
Size Effect on Two-Phase Regime for Condensation in Micro/Mini Tubes
,”
Heat Transfer Asian Res.
,
32
(
1
), pp.
65
71
. 10.1002/htj.10076
15.
Khandekar
,
S.
,
Dollinger
,
N.
, and
Groll
,
M.
,
2003
, “
Understanding Operational Regimes of Closed Loop Pulsating Heat Pipes: An Experimental Study
,”
Appl. Therm. Eng.
,
23
(
6
), pp.
707
719
. 10.1016/S1359-4311(02)00237-5
16.
Mameli
,
M.
,
Marengo
,
M.
, and
Zinna
,
S.
,
2012
, “
Numerical Investigation of the Effects of Orientation and Gravity in a Closed Loop Pulsating Heat Pipe
,”
Microgravity Sci. Technol.
,
24
(
2
), pp.
79
92
. 10.1007/s12217-011-9293-2
17.
Qu
,
J.
,
Wang
,
Q.
, and
Sun
,
Q.
,
2016
, “
Lower Limit of Internal Diameter for Oscillating Heat Pipes: A Theoretical Model
,”
Int. J. Therm. Sci.
,
110
, pp.
174
185
. 10.1016/j.ijthermalsci.2016.07.002
18.
Ma
,
H.
,
2015
,
Oscillating Heat Pipes
,
Springer
,
New York
.
19.
Khandekar
,
S.
,
Groll
,
M.
,
Charoensawan
,
P.
,
Rittidech
,
S.
, and
Terdtoon
,
P.
,
2004
, “
Closed and Open Loop Pulsating Heat Pipes
,”
International Heat Pipe Conference
,
Shanghai, China
,
Sept. 21–25
.
20.
Cheng
,
P.
, and
Wu
,
H. Y.
,
2006
, “
Mesoscale and Microscale Phase-Change Heat Transfer
,”
Adv. Heat Transfer
,
39
, pp.
461
563
. 10.1016/S0065-2717(06)39005-3
21.
Khandekar
,
S.
, and
Groll
,
M.
,
2003
, “
On the Definition of Pulsating Heat Pipes: An Overview
,”
Proceedings of the Fifth Minsk International Seminar
,
Minsk, Belarus
,
Sept. 8–11
, pp.
116
128
.
You do not currently have access to this content.