Abstract

This paper presents an experimental investigation of the forced convective heat transfer of FC-72 in vertical tubes at various velocities, inlet temperatures, and tube sizes. Exponentially escalating heat inputs were supplied to the small tubes with inner diameters of 1, 1.8, and 2.8 mm and effective heated lengths between 30.1 and 50.2 mm. The exponential periods of heat input range from 6.4 to 15.5 s. The experimental data suggest that the convective heat transfer coefficients increase with an increase in flow velocity and µ/µw (refers to the viscosity evaluated at the bulk liquid temperature over the liquid viscosity estimated at the tube inner surface temperature). When tube diameter and the ratio of effective heated length to inner diameter decrease, the convective heat transfer coefficients increase as well. The experimental data were nondimensionalized to explore the effect of Reynolds number (Re) on forced convection heat transfer coefficient. It was found that the Nusselt numbers (Nu) are influenced by the Re for d = 2.8 mm in the same pattern as the conventional correlations. However, the dependences of Nu on Re for d = 1 and 1.8 mm show different trends. It means that the conventional heat transfer correlations are inadequate to predict the forced convective heat transfer in minichannels. The experimental data for tubes with diameters of 1, 1.8, and 2.8 mm were well correlated separately. And, the data agree with the proposed correlations within ±15%.

References

1.
Kandlikar
,
S. G.
,
2002
, “
Fundamental Issues Related to Flow Boiling in Minichannels and Microchannels
,”
Exp. Therm. Fluid. Sci.
,
26
(
2–4
), pp.
389
407
. 10.1016/S0894-1777(02)00150-4
2.
Wu
,
P.
, and
Little
,
W. A.
,
1983
, “
Measurement of Friction Factors for the Flow of Gases in Very Fine Channels Used for Microminiature Refrigerators
,”
Cryogenics
,
23
(
5
), pp.
273
277
. 10.1016/0011-2275(83)90150-9
3.
Choi
,
S. B.
,
Barron
,
R. F.
, and
Warrington
,
R.O.
,
1991
, “
Fluid Flow and Heat Transfer in Microtubes, in: Micromechanical Sensors
,”
American Society of Mechanical Engineers, Dynamic Systems and Control Division
,
DSC.32
(
1
), pp.
123
134
.
4.
Adams
,
T.
,
Abdel-Khalik
,
S. I.
,
Jeter
,
S. M.
, and
Qureshi
,
Z. H.
,
1998
, “
An Experimental Investigation of Single-Phase Forced Convection in Microchannels
,”
Int. J. Heat Mass Transfer
,
41
(
6–7
), pp.
851
857
. 10.1016/S0017-9310(97)00180-4
5.
Yu
,
D.
,
Warrington
,
R. O.
,
Barron
,
R.
, and
Ameel
,
T.
,
1995
, “
An Experimental and Theoretical Investigation of Fluid Flow and Heat Transfer in Microtubes
,”
Proceedings of ASME/JSME Thermal Engineering Joint Conference
,
Maui, HI
,
Mar. 19–24
, pp.
523
530
.
6.
Kandlikar
,
S. G.
,
Joshi
,
S.
, and
Tian
,
S.
,
2013
, “
Effect of Surface Roughness on Heat Transfer and Fluid Flow Characteristics at Low Reynolds Numbers in Small Diameter Tubes
,”
Heat Transfer Eng.
,
24
(
3
), pp.
4
16
. 10.1080/01457630304069
7.
Lee
,
P.-S.
,
Garimella
,
S. V.
, and
Liu
,
D.
,
2005
, “
Investigation of Heat Transfer in Rectangular Microchannels
,”
Int. J. Heat Mass Transfer
,
48
(
9
), pp.
1688
1704
. 10.1016/j.ijheatmasstransfer.2004.11.019
8.
Debray
,
F.
,
Franc
,
J. P.
,
Maitre
,
T.
, and
Reynaud
,
S.
,
2001
, “
Mesure des Coefficient de Transfert Thermique par Convection Forcée en Mini-Canaux
,”
Mec. Ind.
,
2
(
5
), pp.
443
454
. 10.1016/s1296-2139(01)01123-x
9.
Peng
,
X. F.
, and
Wang
,
B. X.
,
1993
, “
Forced Convection and Fluid Flow Boiling Heat Transfer for Liquid Flowing Through Microchannels
,”
Int. J. Heat Mass Transfer
,
36
(
14
), pp.
3421
3427
. 10.1016/0017-9310(93)90160-8
10.
Adams
,
T. M.
,
Dowling
,
M. F.
,
Abdel-Khalik
,
S. I.
, and
Jeter
,
S. M.
,
1999
, “
Applicability of Traditional Turbulent Single Phase Forced Convection Correlations to Non-Circular Microchannels
,”
Int. J. Heat Mass Transfer
,
42
(
23
), pp.
4411
4415
. 10.1016/S0017-9310(99)00102-7
11.
Owahib
,
W.
, and
Palm
,
B.
,
2004
, “
Experimental Investigation of Single-Phase Convective Heat Transfer in Circular Micro Channels
,”
Exp. Therm. Fluid. Sci.
,
28
(
2–3
), pp.
105
110
. 10.1016/S0894-1777(03)00028-1
12.
Agostini
,
B.
,
Bontemps
,
A.
, and
Thonon
,
B.
,
2006
, “
Effects of Geometrical and Thermophysical Parameters on Heat Transfer Measurements in Small Diameter Channels
,”
Heat Transfer Eng.
,
27
(
1
), pp.
14
24
. 10.1080/01457630500341656
13.
Acosta
,
R. E.
,
Muller
,
R. H.
, and
Tobias
,
W. C.
,
1985
, “
Transport Processes in Narrow (Capillary) Channels
,”
AIChE J.
,
31
(
3
), pp.
473
482
. 10.1002/aic.690310315
14.
Gnielinski
,
V.
,
1976
, “
New Equations for Heat Transfer in Turbulent Pipe and Channel Flow
,”
Int. Chem. Eng.
,
16
(
1
), pp.
359
368
.
15.
Dai
,
B.
,
Li
,
M.
,
Dang
,
C.
,
Ma
,
Y.
, and
Chen
,
Q.
,
2014
, “
Investigation on Convective Heat Transfer Characteristics of Single Phase Liquid Flow in Multi-Port Micro-Channel Tubes
,”
Int. J. Heat Mass Transfer
,
70
(
1
), pp.
114
118
. 10.1016/j.ijheatmasstransfer.2013.10.048
16.
Thakkar
,
K.
,
Kumar
,
K.
, and
Trivedi
,
H.
,
2014
, “
Thermal & Hydraulic Characteristics of Single Phase Flow in Mini-Channel for Electronic Cooling-A Review
,”
Int. J. Innovative Research in Science, Engineering and Technology
,
3
(
2
), pp.
9726
9733
. 10.15680/ijirset
17.
Li
,
Y.
,
Fukuda
,
K.
,
Liu
,
Q.
, and
Shibahara
,
M.
,
2016
, “
Turbulent Heat Transfer With FC-72 in Small Diameter Tubes
,”
Int. J. Heat Mass Transfer
,
103
, pp.
428
434
. 10.1016/j.ijheatmasstransfer.2016.07.018
18.
Li
,
Y.
,
Fukuda
,
K.
, and
Liu
,
Q.
,
2017
, “
Transient Heat Transfer Due to Exponentially Increasing Heat Inputs for Turbulent Flow of FC-72 in Small Diameter Tubes
,”
Int. J. Heat Mass Transfer
,
110
, pp.
880
889
. 10.1016/j.ijheatmasstransfer.2017.03.022
19.
Fukuda
,
K.
, and
Liu
,
Q.
,
2006
, “
Steady and Transient Critical Heat Fluxes on a Horizontal Cylinder in a Pool of Freon-113
,”
Int. J. Trans. Phenom.
,
7
(
1
), pp.
71
83
.
20.
Spalding
,
D. B.
,
2013
,
The PHOENICS Beginner’s Guide
,
CHAM Ltd.
,
London, UK
.
21.
ANSI/ASME
,
1985
, “
Supplement on Instruments and Apparatus, Part 1: Measurement Uncertainty
,”
ASME Performance Test Codes
, ANSI/ASME PTC 19.1.
22.
Liu
,
Q.
,
Zhao
,
Z.
, and
Fukuda
,
K.
,
2015
, “
Experimental Study on Transient Heat Transfer Enhancement From a Twisted Plate in Convection Flow of Helium Gas
,”
Int. J. Heat Mass Transfer
,
90
, pp.
1160
1169
. 10.1016/j.ijheatmasstransfer.2015.07.061
23.
Nusselt
,
W.
,
1931
, “
Der Warmeaustausch Zweischen Wand und Wasser im Rohr
,”
Forsch. Geb. Ingenieurwes.
,
2
(
9
), pp.
309
313
. 10.1007/BF02583210
24.
Dittus
,
F. W.
, and
Boelter
,
L. M. K.
,
1930
,
“Heat Transfer in Automobile Radiators of the Tubular Type”
,
University of California Press
,
Berkeley
,
University of California Publications in Engineering
, Vol.
2
, pp.
443
461
.
25.
Sieder
,
E. N.
, and
Tate
,
C. N.
,
1936
, “
Heat Transfer and Pressure Drop of Liquids in Tubes
,”
Ind. Eng. Chem.
,
28
(
12
), pp.
1429
1435
. 10.1021/ie50324a027
You do not currently have access to this content.