Abstract

To improve the fuel efficiency of automobile engines and reduce pollution owing to automobile exhaust, this study discusses a fixed-curvature spiral-coil heat exchanger that recovers exhaust heat. Herein, the heat transfer performance of the spiral coil is studied via experimental testing and numerical simulation. In this study, a new type of variable-curvature spiral coil is designed to improve the efficiency of the heat exchanger. The effect of different conical angles on the resistance and heat transfer performance of the spiral coil within a range of Reynolds numbers of 4000–14,000 was analyzed. The heat exchange efficiency is a combination of the convective heat transfer and the overall heat recovery. The results of this study indicate that for a spiral-coil tube of length L, increasing the cone angle improves the convective heat transfer outside the tube. However, as the flow resistance increases, the exhaust heat recovery of a variable-curvature spiral-coil heat exchanger (VSE) is up to 18.8% higher than that of a constant curvature spiral-coil heat exchanger. The combined performance of VSE is excellent when the cone angle is 15 deg.

References

1.
Jayakumar
,
J. S.
,
Mahajani
,
S. M.
,
Mandal
,
J. C.
,
Iyer
,
K. N.
, and
Vijayan
,
P. K.
,
2010
, “
CFD Analysis of Single-Phase Flows Inside Helically Coiled Tubes
,”
Comput. Chem. Eng.
,
34
(
4
), pp.
430
446
. 10.1016/j.compchemeng.2009.11.008
2.
Zhu
,
H.
,
Yang
,
X.
,
Ju
,
H.
, and
Jiang
,
S.
,
2012
, “
Analysis of Local Heat Transfer Characteristics of Water and Steam in Helically-Coiled Tube
,”
J. Therm. Sci. Technol.
,
11
(
1
), pp.
27
33
. 10.3969/j.issn.1671-8097.2012.01.005
3.
Zhang
,
X.
,
Zhao
,
S.
, and
Hong
,
S.
,
2014
, “
Heat Transfer and Pressure Drop Characteristics for Water Flowing in Spiral Coil
,”
J. Xi'an Univ. Sci. Technol.
,
34
(
2
), pp.
174
179
. 10.3969/j.issn.1672-9315.2014.02.010
4.
Liu
,
C.
,
Qin
,
H.
, and
Dong
,
D.
,
2014
, “
Study on Flow and Heat Transfer Characteristics of New Curling Tube Heat Exchanger
,”
Process Equip. Piping
,
51
(
3
), pp.
35
39
. 10.3969/j.issn.1009-3281.2014.03.008
5.
Wang
,
S.
,
Jian
,
G.
,
Xiao
,
J.
,
Wang
,
J.
, and
Wen
,
J.
,
2017
, “
Multi-Objective Optimization on the Structural Parameters of Spiral Wound Heat Exchanger
,”
J. Xi'an Jiaotong Univ.
,
51
(
5
), pp.
9
15
. 10.7652/xjtuxb201705002
6.
Alimoradi
,
A.
,
Olfati
,
M.
, and
Maghareh
,
M.
,
2017
, “
Numerical Investigation of Heat Transfer Intensification in Shell and Helically Coiled Finned Tube Heat Exchangers and Design Optimization
,”
Chem. Eng. Process.
,
121
, pp.
125
143
. 10.1016/j.cep.2017.08.005
7.
Alimoradi
,
A.
, and
Veysi
,
F.
,
2017
, “
Optimal and Critical Values of Geometrical Parameters of Shell and Helically Coiled Tube Heat Exchangers
,”
Case Stud. Therm. Eng.
,
10
, pp.
73
78
. 10.1016/j.csite.2017.03.003
8.
Mirgolbabaei
,
H.
,
2018
, “
Numerical Investigation of Vertical Helically Coiled Tube Heat Exchangers Thermal Performance
,”
Appl. Therm. Eng.
,
136
, pp.
252
259
. 10.1016/j.applthermaleng.2018.02.061
9.
Saeidi
,
R.
,
Noorollahi
,
Y.
, and
Esfahanian
,
V.
,
2018
, “
Numerical Simulation of a Novel Spiral Type Ground Heat Exchanger for Enhancing Heat Transfer Performance of Geothermal Heat Pump
,”
Energy Convers. Manage.
,
168
, pp.
296
307
. 10.1016/j.enconman.2018.05.015
10.
Jeon
,
J. S.
,
Lee
,
S. R.
, and
Kim
,
M. J.
,
2018
, “
A Modified Mathematical Model for Spiral Coil-Type Horizontal Ground Heat Exchangers
,”
Energy
,
152
, pp.
732
743
. 10.1016/j.energy.2018.04.007
11.
Daghigh
,
R.
, and
Zandi
,
P.
,
2018
, “
Experimental Analysis of Heat Transfer in Spiral Coils Using Nanofluids and Coil Geometry Change in a Solar System
,”
Appl. Therm. Eng.
,
145
, pp.
295
304
. 10.1016/j.applthermaleng.2018.09.053
12.
Hosseini
,
S. S.
,
Farhadi
,
M.
, and
Sedighi
,
K.
,
2017
, “
Experimental Investigation of a Solar Desalination System Using Twisted Tape and Wire Coil Inside of Spiral Heat Exchanger
,”
Desalination
,
420
, pp.
34
44
. 10.1016/j.desal.2017.06.004
13.
Panahi
,
D.
, and
Zamzamian
,
K.
,
2017
, “
Heat Transfer Enhancement of Shell-and-Coiled Tube Heat Exchanger Utilizing Helical Wire Turbulator
,”
Appl. Therm. Eng.
,
115
, pp.
607
615
. 10.1016/j.applthermaleng.2016.12.128
14.
Orr
,
B.
,
Akbarzadeh
,
A.
,
Mochizuki
,
M.
, and
Singh
,
R.
,
2016
, “
A Review of Car Waste Heat Recovery Systems Utilising Thermoelectric Generators and Heat Pipes
,”
Appl. Therm. Eng.
,
101
, pp.
490
495
. 10.1016/j.applthermaleng.2015.10.081
15.
Elattar
,
H. F.
,
Fouda
,
A.
,
Nada
,
S. A.
,
Refaey
,
H. A.
, and
Al-Zahrani
,
A.
,
2018
, “
Thermal and Hydraulic Numerical Study for a Novel Multi Tubes in Tube Helically Coiled Heat Exchangers: Effects of Operating/Geometric Parameters
,”
Int. J. Therm. Sci.
,
128
, pp.
70
83
. 10.1016/j.ijthermalsci.2018.02.020
16.
Demir
,
M. E.
, and
Dincer
,
I.
,
2017
, “
Performance Assessment of a Thermoelectric Generator Applied to Exhaust Waste Heat Recovery
,”
Appl. Therm. Eng.
,
120
, pp.
694
707
. 10.1016/j.applthermaleng.2017.03.052
17.
Yang
,
S. M.
, and
Tao
,
W. Q.
,
2006
,
Heat Transfer Science
,
Higher Education Press
,
Beijing
.
18.
ANSYS Inc.
,
2013
, “
ANSYS FLUENT 12.0 User's Guide. Modeling Turbulence
,” http://www.afs.enea.it/project/neptunius/docs/fluent/html/ug/node405.htm, Accessed July 4, 2019.
19.
Hu
,
K.
, and
Li
,
Z. B.
,
2014
,
Detailed Explanation of Engineering Example of ANSYS ICEM CFD in CAE Analysis Department
,
Posts and Telecommunications Press
,
Beijing
.
20.
Dong
,
Q. W.
,
Xie
,
J.
,
Liu
,
M. S.
, and
Wang
,
Y. Q.
,
2009
, “
Selection and Analysis of Wall Function in Shell-and-Tube Heat Exchanger Simulation
,”
China Pet. Mach.
,
37
(
2
), pp.
41
44
. 10.16082/j.cnki.issn.1001-4578.2009.02.001
21.
Fan
,
G.
,
Fan
,
K.
,
Liu
,
P.
, and
Jiang
,
L.
,
2015
, “
Numerical Simulation of the Comprehensive Heat Transfer Performance in Different Types of Structural Longitudinal Finned Tube
,”
Chem. Ind. Eng. Prog.
,
34
(
4
), pp.
935
940
. 10.16085/j.issn.1000-6613.2015.04.006
You do not currently have access to this content.