Abstract
Results are presented here from an experimental investigation on tube side two-phase characteristics that took place in four tested tubes—the 1EHT-1, 1EHT-2, 4LB, and smooth tubes. The equivalent outer diameter of the tube was 9.52 mm and the inner diameter was 8.32 mm. Condensation tests were conducted using refrigerant R410A at a saturation temperature of 318 K, over a mass flow range of 150–450 kg m−2 s−1, with inlet and outlet vapor qualities of 0.8 and 0.2, respectively. Evaporation tests were performed at a saturation temperature of 279 K, over a mass flow range of 150–380 kg m−2 s−1, with inlet and outlet vapor qualities of 0.2 and 0.8, respectively. Pressure drop data of the four tested tubes were collected to evaluate five identified prediction correlations based on the separated flow model and the homogeneous flow model. The separated flow approaches presented predictions with average MAEs of 24.9% and 16.4% for condensation and evaporation data, respectively, while the average MAEs of the homogeneous flow model were 31.6% and 43.4%, respectively. Almost all the identified correlations underestimated the frictional pressure drop of the 4LB tube with MAEs exceeding 30%. An earlier transition of different flow patterns was expected to occur in the EHT tubes while developing a new diabatic flow pattern map is needed for the 4LB tube. A new correlation was presented based on the two-phase multiplier Φ and the Martinelli parameter Xtt, which exhibited excellent predictive results for the experimental data.