Graphical Abstract Figure
Graphical Abstract Figure
Close modal

Abstract

Decarbonization of buildings is an imperative and challenging task. Beyond the common challenges associated with building decarbonization, those in high-density urban areas also face technical challenges due to geographical conditions and resource endowments. As decarbonization practices deepen, it has been found that reliance on conventional methods is fraught with difficulties, primarily due to the high proportion of incremental costs involved. This review study explores methods not widely incorporated into existing building energy efficiency standards but which hold the potential for aiding decarbonization. It advocates for a synergistic strategy involving surrounding infrastructure such as power and other building energy systems, innovative low-carbon building materials, and greenery to facilitate this transition.

References

1.
IEA
,
2021
, “Global Energy and Process Emissions From Buildings, Including Embodied Emissions From New Construction,” Paris. https://www.iea.org/data-and-statistics/charts/global-energy-and-process-emissions-from-buildings-including-embodied-emissions-from-new-construction-2021.
2.
Ministry of Housing and Urban Rural Development of the People's Republic of China
,
2019
, “GB/T51350-2019 Technical Standards for Near Zero Energy Consumption Buildings.” https://www.mohurd.gov.cn/gongkai/zhengce/zhengcefilelib/201905/20190530_240712.html.
3.
Ministry of Transport B and H
,
2018
, “Executive Order on Building Regulations 2018 (BR18).” https://bygningsreglementet.dk/∼/media/Br/BR-English/BR18_Executive_order_on_building_regulations_2018.pdf.
4.
Li
,
J.
, and
Gou
,
Z.
,
2024
, “
Addressing the Development Gap in Net-Zero Energy Buildings: A Comparative Study of China, India, and the United States
,”
Energy Sustainable Dev.
,
79
.
5.
Shimoda
,
Y.
,
Sugiyama
,
M.
,
Nishimoto
,
R.
, and
Momonoki
,
T.
,
2021
, “
Evaluating Decarbonization Scenarios and Energy Management Requirement for the Residential Sector in Japan Through Bottom-Up Simulations of Energy End-Use Demand in 2050
,”
Appl. Energy
,
303
.
6.
Berrill
,
P.
,
Wilson
,
E. J. H.
,
Reyna
,
J. L.
,
Fontanini
,
A. D.
, and
Hertwich
,
E. G.
,
2022
, “
Decarbonization Pathways for the Residential Sector in the United States
,”
Nat. Clim. Change
,
12
(
8
), pp.
712
718
.
7.
Cristino
,
T. M.
,
Lotufo
,
F. A.
,
Delinchant
,
B.
,
Wurtz
,
F.
, and
Faria Neto
,
A.
,
2021
, “
A Comprehensive Review of Obstacles and Drivers to Building Energy-Saving Technologies and Their Association With Research Themes, Types of Buildings, and Geographic Regions
,”
Renewable Sustainable Energy Rev.
,
135
.
8.
Pan
,
W.
, and
Pan
,
M.
,
2021
, “
Drivers, Barriers and Strategies for Zero Carbon Buildings in High-Rise High-Density Cities
,”
Energy Build.
,
242
.
9.
Yeatts
,
D. E.
,
Auden
,
D.
,
Cooksey
,
C.
, and
Chen
,
C. F.
,
2017
, “
A Systematic Review of Strategies for Overcoming the Barriers to Energy-Efficient Technologies in Buildings
,”
Energy Res. Soc. Sci.
,
32
, pp.
76
85
.
10.
Madadizadeh
,
A.
,
Siddiqui
,
K.
, and
Aliabadi
,
A. A.
,
2024
, “
Review: The Economics Landscape for Building Decarbonization
,”
Sustainability
,
16
(
14
), p.
6214
.
11.
Tiberi
,
M.
, and
Carbonara
,
E.
,
2016
, “
Comparing Energy Improvements and Financial Costs of Retrofitting Interventions in a Historical Building
,”
Energy Proc.
,
101
, pp.
995
1001
.
12.
Schwarz
,
M.
,
Nakhle
,
C.
, and
Knoeri
,
C.
,
2020
, “
Innovative Designs of Building Energy Codes for Building Decarbonization and Their Implementation Challenges
,”
J. Cleaner Prod.
,
248
.
13.
Kyeong
,
C. M.
,
Struthers
,
C. L.
,
Brown
,
M. A.
,
Kale
,
S.
, and
Chapman
,
O.
,
2024
, “
Toward Residential Decarbonization: Analyzing Social-Psychological Drivers of Household Co-Adoption of Rooftop Solar, Electric Vehicles, and Efficient HVAC Systems in Georgia, U.S
,”
Renewable Energy
,
226
.
14.
Brown
,
M. A.
, and
Chapman
,
O.
,
2023
, “
The Importance of Co-Adoption Pathways
,”
Joule
,
7
(
11
), pp.
2421
2422
.
15.
Peñasco
,
C.
,
Anadón
,
L. D.
, and
Verdolini
,
E.
,
2021
, “
Systematic Review of the Outcomes and Trade-Offs of Ten Types of Decarbonization Policy Instruments
,”
Nat. Clim. Change
,
11
(
3
), pp.
257
265
.
16.
Salazar
,
J.
,
Guevara
,
J.
,
Espinosa
,
M.
,
Rivera
,
F.
, and
Franco
,
J. F.
,
2022
, “
Decarbonization of the Colombian Building Sector: Social Network Analysis of Enabling Stakeholders
,”
Buildings
,
12
(
10
), p.
1531
.
17.
Cabrera Serrenho
,
A.
,
2022
, “
Big Homes Hinder Emission Cuts
,”
Nat. Clim. Change
,
12
(
8
), pp.
705
706
.
18.
Hui
,
S. C. M.
,
2001
, “
Low Energy Building Design in High Density Urban Cities
,”
Renewable Energy
,
24
(
3–4
), pp.
627
640
.
19.
UCL-Energy
,
2017
, “High-Rise Buildings: Energy and Density” Research Project Results.
20.
Wang
,
Y.
,
Mauree
,
D.
,
Sun
,
Q.
,
Lin
,
H.
,
Scartezzini
,
J. L.
, and
Wennersten
,
R.
,
2020
, “
A Review of Approaches to Low-Carbon Transition of High-Rise Residential Buildings in China
,”
Renewable Sustainable Energy Rev.
,
131
.
21.
Zhu
,
Y.
, and
Lin
,
B.
,
2004
, “
Sustainable Housing and Urban Construction in China
,”
Energy Build.
,
36
(
12
), pp.
1287
1297
.
22.
Lv
,
G.
,
Zhao
,
K.
,
Qin
,
Y.
, and
Ge
,
J.
,
2022
, “
An Urban-Scale Method for Building Roofs Available Wind Resource Evaluation Based on Aerodynamic Parameters of Urban Sublayer Surfaces
,”
Sustain. Cities Soc.
,
80
.
23.
Ruparathna
,
R.
,
Hewage
,
K.
, and
Sadiq
,
R.
,
2016
, “
Improving the Energy Efficiency of the Existing Building Stock: A Critical Review of Commercial and Institutional Buildings
,”
Renewable Sustainable Energy Rev.
,
53
, pp.
1032
1045
.
24.
Cao
,
X.
,
Dai
,
X.
, and
Liu
,
J.
,
2016
, “
Building Energy-Consumption Status Worldwide and the State-of-the-Art Technologies for Zero-Energy Buildings During the Past Decade
,”
Energy Build.
,
128
, pp.
198
213
.
25.
Local Government Association
,
2022
, “Hard to Decarbonise Social Homes.”
26.
Liu
,
Z.
,
Zhou
,
Q.
,
Tian
,
Z.
,
He
,
B.-J.
, and
Jin
,
G.
,
2019
, “
A Comprehensive Analysis on Definitions, Development, and Policies of Nearly Zero Energy Buildings in China
,”
Renewable Sustainable Energy Rev.
,
114
.
27.
Voss
K
, and
Eike
M.
,
2013
, “Net Zero Energy Buildings—International Projects of Carbon Neutrality in Buildings.”
28.
Chen
,
Y.
,
Yang
,
X.
, and
Zhang
,
Q.
,
2022
, “
Design Method and Classic Case Analysis of Low Carbon Community
,”
J. Landsc. Res.
,
14
(
4
), p.
1
.
29.
Martiskainen
,
M.
, and
Kivimaa
,
P.
,
2018
, “
Creating Innovative Zero Carbon Homes in the United Kingdom – Intermediaries and Champions in Building Projects
,”
Environ. Innov. Soc. Transit.
,
26
, pp.
15
31
.
30.
Center for the Green Buildings and Cities H
,
2024
, “CGBC Headquarters: HouseZero,” https://harvardcgbc.org/housezero/. Accessed April 7, 2024.
31.
Grinham
,
J.
,
Fjeldheim
,
H.
,
Yan
,
B.
,
Helge
,
T. D.
,
Edwards
,
K.
,
Hegli
,
T.
, and
Malkawi
,
A.
,
2022
, “
Zero-Carbon Balance: The Case of HouseZero
,”
Build. Environ.
,
207
.
32.
CMTA
,
n.d.
, “A Community Center Designed for Tomorrow's Energy Landscape.” https://www.cmta.com/results/case-studies/lubber-run-community-center, Accessed April 7, 2024.
33.
Wuyun
,
Q.
,
Li
,
B.
,
Bian
,
M.
,
Wang
,
C.
,
Huang
,
Z.
,
Wang
,
B.
,
Cai
,
W.
, et al
,
2024
, “
Demonstration and Data Analysis of a Zero Emission Building (ZEB) in Beijing, China
,”
Sol. Energy
,
272
.
34.
Oxford Properties Group
,
n.d.
, “Future-Forward Office Space.” https://thestackyvr.com/, Accessed April 7, 2024.
35.
Li
,
D. H. W.
,
Yang
,
L.
, and
Lam
,
J. C.
,
2013
, “
Zero Energy Buildings and Sustainable Development Implications – A Review
,”
Energy
,
54
, pp.
1
10
.
36.
Belussi
,
L.
,
Barozzi
,
B.
,
Bellazzi
,
A.
,
Danza
,
L.
,
Devitofrancesco
,
A.
,
Fanciulli
,
C.
,
Ghellere
,
M.
, et al
,
2019
, “
A Review of Performance of Zero Energy Buildings and Energy Efficiency Solutions
,”
J. Build. Eng.
,
25
.
37.
Omrany
,
H.
,
Chang
,
R.
,
Soebarto
,
V.
,
Zhang
,
Y.
,
Ghaffarianhoseini
,
A.
, and
Zuo
,
J.
,
2022
, “
A Bibliometric Review of Net Zero Energy Building Research 1995–2022
,”
Energy Build.
,
262
.
38.
Yu
,
F.
,
Feng
,
W.
,
Leng
,
J.
,
Wang
,
Y.
, and
Bai
,
Y.
,
2022
, “
Review of the U.S. Policies, Codes, and Standards of Zero-Carbon Buildings
,”
Buildings
,
12
(
12
), p.
2060
.
39.
Zhou
,
H.
,
Tian
,
X.
,
Zhao
,
Y.
,
Chang
,
C.
, and
Lin
,
B.
,
2024
, “
Investigation of Policy Tools for Energy Efficiency Improvement in Public Buildings in China – Current Situation, Obstacles, and Solutions
,”
City Built Environ.
,
2
(
1
), p.
2
.
40.
Li
,
Y.
,
Wang
,
Y.
,
Zhou
,
R.
,
Qian
,
H.
,
Gao
,
W.
, and
Zhou
,
W.
,
2024
, “
Energy Transition Roadmap Towards Net-Zero Communities: A Case Study in Japan
,”
Sustain. Cities Soc.
,
100
.
41.
Gilani
,
S.
,
Ferguson
,
A.
, and
Stylianou
,
M.
,
2023
, “
Carbon Impacts of the Energy Code for Canadian Housing
,”
Energy Build.
,
299
.
42.
Regeringskansliet
,
2017
, “Riksdagen Antar Historiskt Klimatpolitiskt Ramverk.”
43.
Braungardt
,
S.
,
Bürger
,
V.
, and
Köhler
,
B.
,
2021
, “
Carbon Pricing and Complementary Policies – Consistency of the Policy Mix for Decarbonizing Buildings in Germany
,”
Energies (Basel)
,
14
(
21
), p.
113573
.
44.
Ministry of Housing C and LG
,
2021
, “The Future Homes Standard: 2019 Consultation on Changes to Part L (Conservation of Fuel and Power) and Part F (Ventilation) of the Building Regulations for New Dwellings,” London.
45.
Ministry of Housing and Urban-Rural Development
,
2021
,
GB 55015-2021 General Specifications for Building Energy Conservation and Renewable Energy Utilization
,
China Architecture Publishing & Media Co., Ltd
,
Beijing, China
.
46.
Federal Chief Sustainability Officer (CSO)
,
2022
, “Net-Zero Emissions Buildings by 2045, Including a 50% Reduction by 2032.” https://www.sustainability.gov/federalsustainabilityplan/buildings.html, Accessed April 17, 2024.
47.
Karlsson
,
I.
,
Rootzén
,
J.
,
Johnsson
,
F.
, and
Erlandsson
,
M.
,
2021
, “
Achieving Net-Zero Carbon Emissions in Construction Supply Chains – A Multidimensional Analysis of Residential Building Systems
,”
Dev. Built Environ.
,
8
.
48.
Galvin
,
R.
,
2022
, “
Net-Zero-Energy Buildings or Zero-Carbon Energy Systems? How Best to Decarbonize Germany’s Thermally Inefficient 1950s–1970s-Era Apartments
,”
J. Build. Eng.
,
54
.
49.
Beis
,
2022
, “Building for 2050 Low Cost, Low Carbon Homes.”
50.
Zuo
,
J.
,
Read
,
B.
,
Pullen
,
S.
, and
Shi
,
Q.
,
2012
, “
Achieving Carbon Neutrality in Commercial Building Developments – Perceptions of the Construction Industry
,”
Habitat. Int.
,
36
(
2
), pp.
278
286
.
51.
David Lloyd Jones, Studio E Architects
,
2004
, “Wind Developer Builds First Commercial Net Zero Carbon Dioxide Emissions Building in the UK.”
52.
Chris Twinn
,
2003
, “BedZED.”
53.
Mulya
,
K. S.
,
Ng
,
W. L.
,
Biró
,
K.
,
Ho
,
W. S.
,
Wong
,
K. Y.
, and
Woon
,
K. S.
,
2024
, “
Decarbonizing the High-Rise Office Building: A Life Cycle Carbon Assessment to Green Building Rating Systems in a Tropical Country
,”
Build. Environ.
,
255
.
54.
Luo
,
X. J.
,
2022
, “
Retrofitting Existing Office Buildings Towards Life-Cycle Net-Zero Energy and Carbon
,”
Sustain. Cities Soc.
,
83
.
55.
Zhao
,
Z.
,
Lin
,
Y. F.
,
Stumpf
,
A.
, and
Wang
,
X.
,
2023
, “
Improving LEED-Certified Building Loads on Borehole Heat Exchangers by Coupling Subsurface Variables
,”
Appl. Therm. Eng.
,
224
.
56.
IEA
,
2021
, “Net Zero by 2050,” Paris.
57.
Wang
,
T.
,
Wang
,
Y.
,
Wang
,
K.
,
Fu
,
S.
, and
Ding
,
L.
,
2024
, “
Five-Dimensional Assessment of China’s Centralized and Distributed Photovoltaic Potential: From Solar Irradiation to CO2 Mitigation
,”
Appl. Energy
,
356
.
58.
NASA
,
n.d.
, “Prediction of Worldwide Energy Resource.” https://power.larc.nasa.gov/data-access-viewer/, Accessed April 19, 2024.
59.
World Bank Group
,
n.d.
, “Global Solar Atlas.” https://globalsolaratlas.info/map, Accessed April 19, 2024.
60.
Liu
,
J.
,
Wang
,
M.
,
Peng
,
J.
,
Chen
,
X.
,
Cao
,
S.
, and
Yang
,
H.
,
2020
, “
Techno-Economic Design Optimization of Hybrid Renewable Energy Applications for High-Rise Residential Buildings
,”
Energy Convers. Manage.
,
213
.
61.
Shirinbakhsh
,
M.
, and
Harvey
,
L. D. D.
,
2023
, “
Feasibility of Achieving Net-Zero Energy Performance in High-Rise Buildings Using Solar Energy
,”
Energy Built Environ.
,
5
(
6
), pp.
946
956
.
62.
Aste
,
N.
,
Caputo
,
P.
,
Buzzetti
,
M.
, and
Fattore
,
M.
,
2016
, “
Energy Efficiency in Buildings: What Drives the Investments? The Case of Lombardy Region
,”
Sustain. Cities Soc.
,
20
, pp.
27
37
.
63.
Amadeh
,
A.
,
Lee
,
Z. E.
, and
Max Zhang
,
K.
,
2023
, “
Building Cluster Demand Flexibility: An Innovative Characterization Framework and Applications at the Planning and Operational Levels
,”
Energy Convers. Manage.
,
283
.
64.
Garimella
,
S.
,
Lockyear
,
K.
,
Pharis
,
D.
,
El Chawa
,
O.
,
Hughes
,
M. T.
, and
Kini
,
G.
,
2022
, “
Realistic Pathways to Decarbonization of Building Energy Systems
,”
Joule
,
6
(
5
), pp.
956
971
.
65.
Rahman
,
S.
,
Haque
,
A.
, and
Jing
,
Z.
,
2021
, “
Modeling and Performance Evaluation of Grid-Interactive Efficient Buildings (GEB) in a Microgrid Environment
,”
IEEE Open Access J. Power Energy
,
8
, pp.
423
432
.
66.
Olauson
,
J.
,
Ayob
,
M. N.
,
Bergkvist
,
M.
,
Carpman
,
N.
,
Castellucci
,
V.
,
Goude
,
A.
,
Lingfors
,
D.
,
Waters
,
R.
, and
Widén
,
J.
,
2016
, “
Net Load Variability in Nordic Countries With a Highly or Fully Renewable Power System
,”
Nat. Energy
,
1
(
12
), pp.
1
8
.
67.
Chen
,
Q.
,
Kuang
,
Z.
,
Liu
,
X.
, and
Zhang
,
T.
,
2022
, “
Energy Storage to Solve the Diurnal, Weekly, and Seasonal Mismatch and Achieve Zero-Carbon Electricity Consumption in Buildings
,”
Appl. Energy
,
312
.
68.
Fitzpatrick
,
P.
,
D’Ettorre
,
F.
,
De Rosa
,
M.
,
Yadack
,
M.
,
Eicker
,
U.
, and
Finn
,
D. P.
,
2020
, “
Influence of Electricity Prices on Energy Flexibility of Integrated Hybrid Heat Pump and Thermal Storage Systems in a Residential Building
,”
Energy Build.
,
223
.
69.
Waite
,
M.
, and
Modi
,
V.
,
2020
, “
Electricity Load Implications of Space Heating Decarbonization Pathways
,”
Joule
,
4
(
2
), pp.
376
394
.
70.
Ge
,
J.
,
Lv
,
G.
,
Tang
,
J.
, and
Zhao
,
K.
,
2024
, “
Building Decarbonization Based on Building Loads Flexibility and Clusters’ Collaboration
,”
Natl. Sci. Open
,
3
(
3
).
71.
Mark
,
G.
, and
Subbu
,
S.
,
2020
, “
Air-Conditioning Demand Response Resource Assessment for Australia
,”
Sci. Technol. Built. Environ.
,
26
(
8
), pp.
1048
1064
.
72.
Li
,
S.
,
Peng
,
J.
,
Zou
,
B.
,
Li
,
B.
,
Lu
,
C.
,
Cao
,
J.
,
Luo
,
Y.
, and
Ma
,
T.
,
2021
, “
Zero Energy Potential of Photovoltaic Direct-Driven Air Conditioners With Considering the Load Flexibility of Air Conditioners
,”
Appl. Energy
,
304
.
73.
Kobashi
,
T.
,
Choi
,
Y.
,
Hirano
,
Y.
,
Yamagata
,
Y.
, and
Say
,
K.
,
2022
, “
Rapid Rise of Decarbonization Potentials of Photovoltaics Plus Electric Vehicles in Residential Houses Over Commercial Districts
,”
Appl. Energy
,
306
.
74.
Arowolo
,
W.
, and
Perez
,
Y.
,
2023
, “
Rapid Decarbonisation of Paris, Lyon and Marseille’s Power, Transport and Building Sectors by Coupling Rooftop Solar PV and Electric Vehicles
,”
Energy Sustainable Dev.
,
74
, pp.
196
214
.
75.
Dewi
,
R. G.
,
Siagian
,
U. W. R.
,
Asmara
,
B.
,
Anggraini
,
S. D.
,
Ichihara
,
J.
, and
Kobashi
,
T.
,
2023
, “
Equitable, Affordable, and Deep Decarbonization Pathways for Low-Latitude Developing Cities by Rooftop Photovoltaics Integrated With Electric Vehicles
,”
Appl. Energy
,
332
.
76.
Liao
,
W.
,
Xiao
,
F.
,
Li
,
Y.
,
Zhang
,
H.
, and
Peng
,
J.
,
2024
, “
A Comparative Study of Demand-Side Energy Management Strategies for Building Integrated Photovoltaics-Battery and Electric Vehicles (EVs) in Diversified Building Communities
,”
Appl. Energy
,
361
.
77.
El Kontar
,
R.
, and
Jin
,
X.
,
2020
, “
A Framework for Optimal Placement of Rooftop Photovoltaic: Maximizing Solar Production and Operational Cost Savings in Residential Communities
,”
ASME J. Eng. Sustainable Build. Cities
,
1
(
4
), p. 041006.
78.
Holzhey
,
P.
,
Prettl
,
M.
,
Collavini
,
S.
,
Chang
,
N. L.
, and
Saliba
,
M.
,
2023
, “
Toward Commercialization With Lightweight, Flexible Perovskite Solar Cells for Residential Photovoltaics
,”
Joule
,
7
(
2
), pp.
257
271
.
79.
Borenstein
,
S.
,
2022
, “
It’s Time for Rooftop Solar to Compete With Other Renewables
,”
Nat. Energy
,
7
, pp.
298
298
.
80.
Alshawaf
,
M.
,
Poudineh
,
R.
, and
Alhajeri
,
N. S.
,
2020
, “
Solar PV in Kuwait: The Effect of Ambient Temperature and Sandstorms on Output Variability and Uncertainty
,”
Renewable Sustainable Energy Rev.
,
134
.
81.
Zhao
,
Z.
,
Lv
,
G.
,
Xu
,
Y.
,
Lin
,
Y. F.
,
Wang
,
P.
, and
Wang
,
X.
,
2024
, “
Enhancing Ground Source Heat Pump System Design Optimization: A Stochastic Model Incorporating Transient Geological Factors and Decision Variables
,”
Renew. Energy
,
225
.
82.
Cao
,
S.
, and
Sirén
,
K.
,
2014
, “
Impact of Simulation Time-Resolution on the Matching of PV Production and Household Electric Demand
,”
Appl. Energy
,
128
, pp.
192
208
.
83.
IEA
,
2022
, “World Energy Outlook 2022,” Paris.
84.
Zhu
,
W.
,
Lei
,
F.
,
Zhong
,
H.
, and
Wang
,
D.
,
2023
, “
An Improved Reliability Assessment Method for Lithium-Ion Battery System Considering Imbalanced Current and Uneven Cooling
,”
Energy
,
276
.
85.
Narayan
,
N.
,
Papakosta
,
T.
,
Vega-Garita
,
V.
,
Qin
,
Z.
,
Popovic-Gerber
,
J.
,
Bauer
,
P.
, et al
Zeman
,
M.
,
2018
, “
Estimating Battery Lifetimes in Solar Home System Design Using a Practical Modelling Methodology
,”
Appl. Energy
,
228
, pp.
1629
1639
.
86.
Mariana
,
M.
, and
Hamidreza
,
N.
,
2023
, “
Energy Forecasting in Buildings Using Deep Neural Networks
,”
ASME J. Eng. Sustain. Build. Cities
,
4
(
3
), p.
031004
.
87.
Zhuang
X
,
Huang
Z
,
Zeng
W
,
Caldas
L.
,
n.d.
, “MARL: Multi-scale Archetype Representation Learning for Urban Building Energy Modeling.”
88.
Liu
,
Z.
,
Guo
,
Z.
,
Chen
,
Q.
,
Song
,
C.
,
Shang
,
W.
,
Yuan
,
M.
, and
Zhang
,
H.
,
2023
, “
A Review of Data-Driven Smart Building-Integrated Photovoltaic Systems: Challenges and Objectives
,”
Energy
,
263
.
89.
Xin
,
L.
,
Li
,
S.
,
Rene
,
E. R.
,
Lun
,
X.
,
Zhang
,
P.
, and
Ma
,
W.
,
2023
, “
Prediction of Carbon Emissions Peak and Carbon Neutrality Based on Life Cycle CO2 Emissions in Megacity Building Sector: Dynamic Scenario Simulations of Beijing
,”
Environ. Res.
,
238
.
90.
Luo
,
Z.
,
Peng
,
J.
,
Cao
,
J.
,
Yin
,
R.
,
Zou
,
B.
,
Tan
,
Y.
, and
Yan
,
J.
,
2022
, “
Demand Flexibility of Residential Buildings: Definitions, Flexible Loads, and Quantification Methods
,”
Engineering
,
16
, pp.
123
140
.
91.
Lee
,
Z. E.
, and
Zhang
,
K. M.
,
2021
, “
Scalable Identification and Control of Residential Heat Pumps: A Minimal Hardware Approach
,”
Appl. Energy
,
286
.
92.
O'Shaughnessy
,
E.
,
Shah
,
M.
,
Parra
,
D.
, and
Ardani
,
K.
,
2022
, “
The Demand-Side Resource Opportunity for Deep Grid Decarbonization
,”
Joule
,
6
(
5
), pp.
972
983
.
93.
Yu
,
D.
,
Zhou
,
X.
,
Qi
,
H.
, and
Qian
,
F.
,
2023
, “
Low-Carbon City Planning Based on Collaborative Analysis of Supply and Demand Scenarios
,”
City Built Environ.
,
1
(
1
), p.
7
.
94.
Wang
,
A.
,
Li
,
R.
, and
You
,
S.
,
2018
, “
Development of a Data Driven Approach to Explore the Energy Flexibility Potential of Building Clusters
,”
Appl. Energy
,
232
, pp.
89
100
.
95.
Camporeale
,
P. E.
, and
Mercader-Moyano
,
P.
,
2021
, “
A GIS-Based Methodology to Increase Energy Flexibility in Building Cluster Through Deep Renovation: A Neighborhood in Seville
,”
Energy Build.
,
231
.
96.
Zhong
,
T.
,
Zhang
,
Z.
,
Chen
,
M.
,
Zhang
,
K.
,
Zhou
,
Z.
,
Zhu
,
R.
,
Wang
,
Y.
,
Zhang
,
K.
,
Lu
,
G.
, and
Yan
,
J.
,
2021
, “
A City-Scale Estimation of Rooftop Solar Photovoltaic Potential Based on Deep Learning
,”
Appl. Energy
,
298
.
97.
Mansó Borràs
,
I.
,
Neves
,
D.
, and
Gomes
,
R.
,
2023
, “
Using Urban Building Energy Modeling Data to Assess Energy Communities’ Potential
,”
Energy Build.
,
282
.
98.
Leibowicz
,
B. D.
,
Lanham
,
C. M.
,
Brozynski
,
M. T.
,
Vázquez-Canteli
,
J. R.
,
Castejón
,
N. C.
, and
Nagy
,
Z.
,
2018
, “
Optimal Decarbonization Pathways for Urban Residential Building Energy Services
,”
Appl. Energy
,
230
, pp.
1311
1325
.
99.
Chau
,
C. K.
,
Leung
,
T. M.
, and
Ng
,
W. Y.
,
2015
, “
A Review on Life Cycle Assessment, Life Cycle Energy Assessment and Life Cycle Carbon Emissions Assessment on Buildings
,”
Appl. Energy
,
143
, pp.
395
413
.
100.
UNEP
,
n.d.
, “Building Materials and the Climate: Constructing a New Future.”
101.
National Bureau of Statistics
,
n.d.
, “Industrial Product Output 2021.” https://data.stats.gov.cn/easyquery.htm?cn=C01&zb=A0E0H&sj=2021. Accessed June 3, 2023.
102.
Zhang
,
Y.
,
Yan
,
D.
,
Hu
,
S.
, and
Guo
,
S.
,
2019
, “
Modelling of Energy Consumption and Carbon Emission From the Building Construction Sector in China, A Process-Based LCA Approach
,”
Energy Policy
,
134
.
103.
Miller
,
S. A.
,
Horvath
,
A.
, and
Monteiro
,
P. J. M.
,
2018
, “
Impacts of Booming Concrete Production on Water Resources Worldwide
,”
Nat. Sustain.
,
1
, pp.
69
76
.
104.
Wasim
,
M.
,
Abadel
,
A.
,
Abu Bakar
,
B. H.
, and
Alshaikh
,
I. M. H.
,
2022
, “
Future Directions for the Application of Zero Carbon Concrete in Civil Engineering—A Review
,”
Case Stud. Constr. Mater.
,
17
.
105.
Li
,
Z.
, and
Shi
,
X.
,
2023
, “
Towards Sustainable Industrial Application of Carbon-Negative Concrete: Synergistic Carbon-Capture by Concrete Washout Water and Biochar
,”
Mater. Lett.
,
342
.
106.
Tianjin Municipal Urban Management Committee
,
2022
, “Tianjin Urban Green Space Carbon Sequestration Design Guidelines,” Tianjin, China.
107.
Nie
,
M.
,
Qin
,
Y.
, and
Jiang
,
Y.
,
2011
,
China Green and Low Carbon Residential Technology Assessment Manual
,
China Architecture & Building Press
,
Beijing, China
.
108.
Huang
,
Y.
,
Sun
,
W.
,
Qin
,
Z.
,
Zhang
,
W.
,
Yu
,
Y.
,
Li
,
T.
,
Zhang
,
Q.
, et al
,
2022
, “
The Role of China’s Terrestrial Carbon Sequestration 2010-2060 in Offsetting Energy-Related CO2 Emissions
,”
Natl. Sci. Rev.
,
9
(
8
), p.
nwac057
.
109.
Wang
,
S.
,
Zhang
,
Y.
,
Ju
,
W.
,
Chen
,
J. M.
,
Ciais
,
P.
,
Cescatti
,
A.
,
Sardans
,
J.
, et al
,
2020
, “
Recent Global Decline of CO2 Fertilization Effects on Vegetation Photosynthesis
,”
Science
,
370
(
6522
), pp.
1295
1300
.
110.
Wang
,
N.
,
Phelan
,
P. E.
,
Gonzalez
,
J.
,
Harris
,
C.
,
Henze
,
G. P.
,
Hutchinson
,
R.
,
Langevin
,
J.
, et al
,
2017
, “
Ten Questions Concerning Future Buildings Beyond Zero Energy and Carbon Neutrality
,”
Build. Environ.
,
119
, pp.
169
182
.
111.
Zhuang
,
X.
,
Luo
,
N.
,
Hong
,
T.
, and
Koenig
,
M.
,
2023
, “
What Can We Learn From Honda Smart Home With High-Resolution Monitored Performance Data: A Zero-Net Energy Home in California?
Proceedings of Building Simulation 2023: 18th Conference of IBPSA
,
Shanghai, China
,
Sept. 4–6
, pp.
1233
1240
.
112.
Li
,
M.
,
Shan
,
R.
,
Abdulla
,
A.
,
Virguez
,
E.
, and
Gao
,
S.
,
2024
, “
The Role of Dispatchability in China’s Power System Decarbonization
,”
Energy Environ. Sci.
,
17
(
6
), pp.
2193
2205
.
113.
Heptonstall
,
P. J.
, and
Gross
,
R. J. K.
,
2021
, “
A Systematic Review of the Costs and Impacts of Integrating Variable Renewables Into Power Grids
,”
Nat. Energy
,
6
(
1
), pp.
72
83
.
114.
Cabeza
,
L. F.
,
Barreneche
,
C.
,
Miró
,
L.
,
Morera
,
J. M.
,
Bartolí
,
E.
, and
Inés Fernández
,
A.
,
2013
, “
Low Carbon and Low Embodied Energy Materials in Buildings: A Review
,”
Renewable Sustainable Energy Rev.
,
23
, pp.
536
542
.
115.
Strohbach
,
M. W.
,
Arnold
,
E.
, and
Haase
,
D.
,
2012
, “
The Carbon Footprint of Urban Green Space-A Life Cycle Approach
,”
Landsc. Urban Plan
,
104
(
2
), pp.
220
229
.
116.
Wang
,
P.
,
Zhang
,
S.
,
Pu
,
Y.
,
Cao
,
S.
, and
Zhang
,
Y.
,
2021
, “
Estimation of Photovoltaic Power Generation Potential in 2020 and 2030 Using Land Resource Changes: An Empirical Study From China
,”
Energy
,
219
.
You do not currently have access to this content.