Abstract

Without proper battery thermal management, electric vehicles (EVs) suffer from significantly reduced efficiency and performance in cold climates, creating a barrier to electrifying the transportation sector. In this study, we have developed a modular, hybrid battery thermal management system that combines phase change material (PCM) with internal heating. This hybrid system uses PCM to store waste heat generated during driving, maintaining the battery temperature during shorter stops between consecutive trips. For longer stops, internal heating can reheat the battery if the latent heat of the PCM has dissipated. Moreover, by applying PCM on the outside, the proposed system is modular, requiring no structural change within the existing battery module and reducing the impact of increased thermal inertia on battery reheating time. Through both laboratory experiments and numerical simulations, we found that the proposed system could hold the battery temperature above 20 °C for around 2 h at an ambient temperature of −15 °C and achieved a battery reheating time (from 0 °C to 20 °C) of only 11 min. By reusing waste heat during short stops, this system can promote EV adoption in cold climates through improved battery efficiency, particularly for EVs making frequent stops, such as taxis and delivery vehicles.

References

1.
Charged EVs
, “Global Plug-In Vehicle Sales Surpassed 3.2 Million in 2020—Charged EVs,” https://chargedevs.com/newswire/global-plug-in-vehicle-sales-surpassed-3-2-million-in-2020/
2.
“Fuel Economy in Cold Weather,” https://www.fueleconomy.gov/feg/coldweather.shtml
3.
Baechler
,
M. C.
,
Williamson
,
J. L.
,
Gilbride
,
T. L.
,
Cole
,
P. C.
,
Hefty
,
M. G.
, and
Love
,
P. M.
,
2010
, “Building America Best Practices Series: Volume 7.1: Guide to Determining Climate Regions by County.”
5.
Huang
,
J.
, and
Deringer
,
J.
,
2007
, “
Status of Energy Efficient Building Codes in Asia
,”
The Asia Business Council, Hong Kong SAR
,
2007
, pp.
6
9
.
6.
Shui
,
B.
,
Evans
,
M.
,
Lin
,
H.
,
Jiang
,
W.
,
Liu
,
B.
,
Song
,
B.
, and
Somasundaram
,
S.
,
2009
, “
Country Report on Building Energy Codes in China
, Pacific Northwest National Laboratory, Richland, WA.
8.
Peel
,
M. C.
,
Finlayson
,
B. L.
, and
McMahon
,
T. A.
,
2007
, “
Updated World map of the Köppen-Geiger Climate Classification
,”
Hydrol. Earth Syst. Sci.
,
11
(
5
), pp.
1633
1644
.
9.
Worldometer
, “European Countries by Population (2024),” https://www.worldometers.info/population/countries-in-europe-by-population/
10.
Zhang
,
Z.
,
Wang
,
D.
,
Zhang
,
C.
, and
Chen
,
J.
,
2018
, “
Electric Vehicle Range Extension Strategies Based on Improved AC System in Cold Climate—A Review
,”
Int. J. Refrig.
,
88
, pp.
141
150
.
11.
Jaguemont
,
J.
,
Boulon
,
L.
, and
Dubé
,
Y.
,
2016
, “
A Comprehensive Review of Lithium-ion Batteries Used in Hybrid and Electric Vehicles at Cold Temperatures
,”
Appl. Energy
,
164
, pp.
99
114
.
12.
Jaguemont
,
J.
,
Boulon
,
L.
,
Dubé
,
Y.
, and
Poudrier
,
D.
,
2014
, “
Low Temperature Discharge Cycle Tests for a Lithium ion Cell
,”
2014 IEEE Vehicle Power and Propulsion Conference, VPPC 2014
,
Coimbra, Portugal
,
Oct. 27–30
.
13.
Zhang
,
S. S.
,
Xu
,
K.
, and
Jow
,
T. R.
,
2002
, “
Low Temperature Performance of Graphite Electrode in Li-Ion Cells
,”
Electrochim. Acta
,
48
(
3
), pp.
241
246
.
14.
Hu
,
X.
,
Zheng
,
Y.
,
Howey
,
D. A.
,
Perez
,
H.
,
Foley
,
A.
, and
Pecht
,
M.
,
2020
, “
Battery Warm-Up Methodologies at Subzero Temperatures for Automotive Applications: Recent Advances and Perspectives
,”
Prog. Energy Combust. Sci.
,
77
, p.
100806
.
15.
Shang
,
Y.
,
Xia
,
B.
,
Cui
,
N.
,
Zhang
,
C.
, and
Mi
,
C. C.
,
2018
, “
An Automotive Onboard AC Heater Without External Power Supplies for Lithium-Ion Batteries at Low Temperatures
,”
IEEE Trans. Power Electron.
,
33
(
9
), pp.
7759
7769
.
16.
Motoaki
,
Y.
,
Yi
,
W.
, and
Salisbury
,
S.
,
2018
, “
Empirical Analysis of Electric Vehicle Fast Charging Under Cold Temperatures
,”
Energy Policy
,
122
, pp.
162
168
.
17.
Jankowski
,
N. R.
, and
McCluskey
,
F. P.
,
2014
, “
A Review of Phase Change Materials for Vehicle Component Thermal Buffering
,”
Appl. Energy
,
113
, pp.
1525
1561
.
18.
Ianniciello
,
L.
,
Biwolé
,
P. H.
, and
Achard
,
P.
,
2018
, “
Electric Vehicles Batteries Thermal Management Systems Employing Phase Change Materials
,”
J. Power Sources
,
378
, pp.
383
403
.
19.
Rao
,
Z. H.
,
Wang
,
S. F.
, and
Zhang
,
Y. L.
,
2014
, “
Thermal Management With Phase Change Material for a Power Battery Under Cold Temperatures
,”
Energy Sources, Part A
,
36
(
20
), pp.
2287
2295
.
20.
Ling
,
Z.
,
Wen
,
X.
,
Zhang
,
Z.
,
Fang
,
X.
, and
Xu
,
T.
,
2016
, “
Warming-Up Effects of Phase Change Materials on Lithium-Ion Batteries Operated at Low Temperatures
,”
Energy Technol.
,
4
(
9
), pp.
1071
1076
.
21.
Ghadbeigi
,
L.
,
Day
,
B.
,
Lundgren
,
K.
, and
Sparks
,
T. D.
,
2018
, “
Cold Temperature Performance of Phase Change Material Based Battery Thermal Management Systems
,”
Energy Rep.
,
4
, pp.
303
307
.
22.
Zhong
,
G.
,
Zhang
,
G.
,
Yang
,
X.
,
Li
,
X.
,
Wang
,
Z.
,
Yang
,
C.
, and
Gao
,
G.
,
2017
, “
Researches of Composite Phase Change Material Cooling/Resistance Wire Preheating Coupling System of a Designed 18650-Type Battery Module
,”
Appl. Therm. Eng.
,
127
, pp.
176
183
.
23.
He
,
F.
,
Li
,
X.
,
Zhang
,
G.
,
Zhong
,
G.
, and
He
,
J.
,
2018
, “
Experimental Investigation of Thermal Management System for Lithium ion Batteries Module with Coupling Effect by Heat Sheets and Phase Change Materials
,”
Int. J. Energy Res.
,
42
(
10
), pp.
3279
3288
.
24.
Ge
,
H.
,
Huang
,
J.
,
Zhang
,
J.
, and
Li
,
Z.
,
2016
, “
Temperature-Adaptive Alternating Current Preheating of Lithium-Ion Batteries With Lithium Deposition Prevention
,”
J. Electrochem. Soc.
,
163
(
2
), pp.
A290
A9
.
25.
Singha
,
S.
, and
Hedenqvist
,
M. S.
,
2020
, “
A Review on Barrier Properties of Poly(Lactic Acid)/Clay Nanocomposites
,”
Polymers
,
12
(
5
), p.
1095
.
27.
Schneider
,
A.
,
Gardan
,
J.
, and
Gardan
,
N.
, “
Optimisation Numérique en Prototypage Rapide
,” AEPR'12. 2012:actes de colloque.
28.
Mohan
,
S.
,
Kim
,
Y.
, and
Stefanopoulou
,
A. G.
,
2016
, “
Energy-Conscious Warm-Up of Li-Ion Cells From Subzero Temperatures
,”
IEEE Trans. Ind. Electron.
,
63
(
5
), pp.
2954
2964
.
29.
Zhang
,
J.
,
Ge
,
H.
,
Li
,
Z.
, and
Ding
,
Z.
,
2015
, “
Internal Heating of Lithium-ion Batteries Using Alternating Current Based on the Heat Generation Model in Frequency Domain
,”
J. Power Sources
,
273
, pp.
1030
1037
.
31.
Gürtürk
,
M.
, and
Kok
,
B.
,
2020
, “
A New Approach in the Design of Heat Transfer fin for Melting and Solidification of PCM
,”
Int. J. Heat Mass Transfer
,
153
, p.
119671
.
32.
Fadl
,
M.
, and
Eames
,
P. C.
,
2019
, “
Numerical Investigation of the Influence of Mushy Zone Parameter Amush on Heat Transfer Characteristics in Vertically and Horizontally Oriented Thermal Energy Storage Systems
,”
Appl. Therm. Eng.
,
151
, pp.
90
99
.
33.
Esapour
,
M.
,
Hamzehnezhad
,
A.
,
Rabienataj Darzi
,
A. A.
, and
Jourabian
,
M.
,
2018
, “
Melting and Solidification of PCM Embedded in Porous Metal Foam in Horizontal Multi-Tube Heat Storage System
,”
Energy Convers. Manage.
,
171
, pp.
398
410
.
34.
Voller
,
V. R.
, and
Prakash
,
C.
,
1987
, “
A Fixed Grid Numerical Modelling Methodology for Convection-Diffusion Mushy Region Phase-Change Problems
,”
Int. J. Heat Mass Transfer
,
30
(
8
), pp.
1709
1719
.
35.
Brent
,
A. D.
,
Voller
,
V. R.
, and
Reid
,
K. J.
,
1988
, “
Enthalpy-Porosity Technique for Modeling Convection-Diffusion Phase Change: Application to the Melting of a Pure Metal
,”
Numer. Heat Transfer, Part A
,
13
(
3
), pp.
297
318
.
36.
Werner
,
D.
,
Loges
,
A.
,
Becker
,
D. J.
, and
Wetzel
,
T.
,
2017
, “
Thermal Conductivity of Li-Ion Batteries and Their Electrode Configurations—A Novel Combination of Modelling and Experimental Approach
,”
J. Power Sources
,
364
, pp.
72
83
.
37.
Maleki
,
H.
,
Hallaj
,
S. A.
,
Selman
,
J. R.
,
Dinwiddie
,
R. B.
, and
Wang
,
H.
,
1999
, “
Thermal Properties of Lithium-Ion Battery and Components
,”
J. Electrochem. Soc.
,
146
(
3
), pp.
947
954
.
You do not currently have access to this content.