Abstract

Passive energy-efficient design in temperate climates with clear-sky conditions and high solar radiation can lead to a significant reduction in energy use while promoting occupant comfort. This paper presents an optimization of the performance of an office building with a mixed-mode run, including night ventilative cooling and shading strategies in summer. The objective is to assess their effectiveness with zero-energy building criteria. The building design integrates an efficient envelope and renewable energy generation from photovoltaic solar panels on-grid. On-site measurements were taken to collect hygrothermal data and energy demand information. Two office configurations were discussed, open plan and individual office, both options with a high trend to overheat. For all orientations tested, multiple horizontal overhangs have better performance than vertical ones. Results from the net energy balance in the base model present a primary energy demand of 116 kWh/m2/year and the optimization model of 55 kWh/m2/year. To conclude, the positive impact of the implementation of passive design strategies rises the comfort hours in-use period in the open plan office a 70% and in the individual office a 55% and a decrease of 60% of primary energy demand.

References

1.
IEA
,
2019
,
Perspectives for Clean Energy Transition: The Critical Role of Buildings
,
International Energy Agency
,
France
, https://iea.blob.core.windows.net/assets/026bff1b-821d-48bc-8a0e-7c10280c62bc/Perspectives_for_the_Clean_Energy_Transition_2019.pdf
2.
Faiz
,
Q.
, and
González
,
J. E.
,
2021
, “
Climatology and Trends of Heat Index, Human Discomfort Index, and Energy Per Capita for CONUS and Meso-America
,”
ASME J. Eng. Sustain. Build. Cities
,
2
(
4
), p.
044501
.
3.
Servicio Meteorológico Nacional
,
2023
, “Estado Del Clima en Argentina 2022.”
4.
Flores-Larsen
,
S.
,
Filippín
,
C.
, and
Barea
,
G.
,
2019
, “
Impact of Climate Change on Energy Use and Bioclimatic Design of Residential Buildings in the 21st Century in Argentina
,”
Energy Build.
,
184
(
1
), pp.
216
229
.
5.
Berardi
,
U.
,
2018
, “ZEB and nZEB (Definitions, Design Methodologies, Good Practices, and Case Studies),”
Handbook of Energy Efficiency in Buildings: A Life Cycle Approach
,
U.
Desideri
and
F.
Asdrubali
, eds.,
Elsevier
,
New York
, pp.
88
116
.
6.
Banerjee
,
R.
,
2015
, “
Importance of Net Zero Energy Building
,”
Int. J. Innov. Res. Adv. Eng.
,
2
(
5
), pp.
141
145
.
7.
Kylili
,
A.
, and
Fokaides
,
P. A.
,
2015
, “
European Smart Cities: The Role of Zero Energy Buildings
,”
Sustain. Cities Soc.
,
15
(
7
), pp.
86
95
.
8.
Jaysawal
,
R. K.
,
Chakraborty
,
S.
,
Elangovan
,
D.
, and
Padmanaban
,
S.
,
2022
, “
Concept of Net Zero Energy Buildings (NZEB)—A Literature Review
,”
Clean. Eng. Technol.
,
11
(
12
), p.
100582
.
9.
U.S. Department Of Energy
,
2015
, “A Common Definition for Zero Energy Buildings.” https://www.energy.gov/sites/default/files/2015/09/f26/bto_common_definition_zero_energy_buildings_093015.pdf.
10.
European Parliament, Council of the European Union
,
2010
, “
Directive 2010/31/EU of the European Parliament and of the Council on the Energy Performance of Buildings
,”
Off. J. Eur. Union
,
L153/21
, pp.
13
35
.
11.
D’Amanzo
,
M.
,
Mercado
,
M. V.
, and
Karlen
,
C. G.
,
2020
, “
10 Questions About Zero Energy Buildings: A State-of-the-art Review
,”
Habitat Sust.
,
10
(
2
), pp.
24
41
.
12.
Sartori
,
I.
,
Napolitano
,
A.
, and
Voss
,
K.
,
2012
, “
Net Zero Energy Buildings: A Consistent Definition Framework
,”
Energy Build.
,
48
(
5
), pp.
220
232
.
13.
De Luca
,
F.
,
Voll
,
H.
, and
Thalfeldt
,
M.
,
2018
, “
Comparison of Static and Dynamic Shading Systems for Office Building Energy Consumption and Cooling Load Assessment
,”
Manage. Environ. Qual. Int. J.
,
29
(
5
), pp.
978
998
.
14.
Di Turi
,
S.
,
Ronchetti
,
L.
, and
Sannino
,
R.
,
2023
, “
Towards the Objective of Net ZEB: Detailed Energy Analysis and Cost Assessment for New Office Buildings in Italy
,”
Energy Build.
,
279
(
1
), p.
112707
.
15.
Emami Javanmard
,
M.
,
Ghaderi
,
S. F.
, and
Sangari
,
M. S.
,
2020
, “
Integrating Energy and Water Optimization in Buildings Using Multi-Objective Mixed-Integer Linear Programming
,”
Sustain. Cities Soc.
,
62
(
11
), p.
102409
.
16.
Mantesi
,
E.
,
Chmutina
,
K.
, and
Goodier
,
C.
,
2022
, “
The Office of the Future: Operational Energy Consumption in the Post-Pandemic era
,”
Energy Res. Soc. Sci.
,
87
(
5
), p.
102472
.
17.
Song
,
S.
,
Long
,
J.
,
Jiang
,
H.
,
Ran
,
B.
, and
Yao
,
L.
,
2023
, “
Characteristics of Office Lighting Energy Consumption and Its Impact on Air Conditioning Energy Consumption
,”
Energy Built Environ
.
18.
D’Agostino
,
D.
, and
Parker
,
D.
,
2018
, “
A Framework for the Cost-Optimal Design of Nearly Zero Energy Buildings (NZEBs) in Representative Climates Across Europe
,”
Energy
,
149
(
5
), pp.
814
829
.
19.
Poirazis
,
H.
,
Blomsterberg
,
Å
, and
Wall
,
M.
,
2008
, “
Energy Simulations for Glazed Office Buildings in Sweden
,”
Energy Build.
,
40
(
7
), pp.
1161
1170
.
20.
Cho
,
J.
,
Yoo
,
C.
, and
Kim
,
Y.
,
2014
, “
Viability of Exterior Shading Devices for High-Rise Residential Buildings: Case Study for Cooling Energy Saving and Economic Feasibility Analysis
,”
Energy Build.
,
82
(
10
), pp.
771
785
.
21.
Ohene
,
E.
,
Hsu
,
S.-C.
, and
Chan
,
A. P. C.
,
2022
, “
Feasibility and Retrofit Guidelines Towards Net-Zero Energy Buildings in Tropical Climates: A Case of Ghana
,”
Energy Build.
,
269
(
8
), p.
112252
.
22.
Chen
,
J.
,
Augenbroe
,
G.
,
Wang
,
Q.
, and
Song
,
X.
,
2017
, “
Uncertainty Analysis of Thermal Comfort in a Prototypical Naturally Ventilated Office Building and Its Implications Compared to Deterministic Simulation
,”
Energy Build.
,
146
(
7
), pp.
283
294
.
23.
Kuczyński
,
T.
,
Staszczuk
,
A.
,
Gortych
,
M.
, and
Stryjski
,
R.
,
2021
, “
Effect of Thermal Mass, Night Ventilation and Window Shading on Summer Thermal Comfort of Buildings in a Temperate Climate
,”
Build. Environ.
,
204
(
10
), p.
108126
.
24.
Niu
,
J.
,
2004
, “
Some Significant Environmental Issues in High-Rise Residential Building Design in Urban Areas
,”
Energy Build.
,
36
(
12
), pp.
1259
1263
.
25.
Palmero-Marrero
,
A. I.
, and
Oliveira
,
A. C.
,
2010
, “
Effect of Louver Shading Devices on Building Energy Requirements
,”
Appl. Energy
,
87
(
6
), pp.
2040
2049
.
26.
Bellia
,
L.
,
Marino
,
C.
,
Minichiello
,
F.
, and
Pedace
,
A.
,
2014
, “
An Overview on Solar Shading Systems for Buildings
,”
Energy Proc.
,
62
, pp.
309
317
.
27.
Koç
,
S. G.
, and
Maçka Kalfa
,
S.
,
2021
, “
The Effects of Shading Devices on Office Building Energy Performance in Mediterranean Climate Regions
,”
J. Build. Eng.
,
44
(
12
), p.
102653
.
28.
Krstić-Furundžić
,
A.
,
Vujošević
,
M.
, and
Petrovski
,
A.
,
2019
, “
Energy and Environmental Performance of the Office Building Facade Scenarios
,”
Energy
,
183
(
9
), pp.
437
447
.
29.
Beck
,
H. E.
,
Zimmermann
,
N. E.
,
McVicar
,
T. R.
,
Vergopolan
,
N.
,
Berg
,
A.
, and
Wood
,
E. F.
,
2018
, “
Present and Future Köppen-Geiger Climate Classification Maps at 1-km Resolution
,”
Sci. Data
,
5
(
1
), p.
180214
.
30.
NREL
,
2017,
energyPlus, https://energyplus.net/downloads.
31.
Givoni
,
B.
,
1992
, “
Comfort, Climate Analysis and Building Design Guidelines
,”
Energy Build.
,
18
(
1
), pp.
11
23
.
32.
D´Amanzo
,
M.
,
Andreoni
,
S.
,
Montiel
,
V.
,
Betman
,
A.
, and
Ganem
,
C.
,
2022
, “
Passive Design Optimization Towards Nearly Zero Energy Building Requirements
,”
PLEA 2022. Will Cities Survive? Santiago de Chile
, pp.
242
247
.
33.
D’Amanzo
,
M.
,
Ganem
,
C.
, and
Mercado
,
M. V.
,
2022
, “
Comportamiento Térmico y Balance Energético Neto de un Edificio de Oficina de Mendoza con Tendencia Hacia la Energía Casi Nula (nZEB)
,”
Arquitecno
,
20
(
11
), pp.
22
32
.
34.
Hermelink
,
A.
,
Schimschar
,
S.
,
Boermans
,
T.
,
Pagliano
,
L.
,
Zangheri
,
P.
,
Armani
,
R.
,
Voss
,
K.
, and
Musall
,
E.
,
2016
, “
Nearly-Zero Energy Buildings
,”
Sci. Technol. Built Environ.
,
22
(
7
), pp.
883
884
.
You do not currently have access to this content.