Abstract

In this research work, optimization of heat exchange between borehole heat exchanger (BHE) and the ground soil for space cooling and heating applications, incorporating the optimum thermal effectiveness of BHE has been reported. Initially, Taguchi technique is employed to optimize the effectiveness of borehole heat exchanger. Later, the experimental data of 24 h are coupled with the theoretically optimized parameters to compute the optimum heat exchange during peak summer and peak winter seasons. In the Taguchi optimization approach, six control variables at three levels are employed and a standard, L27 (36) orthogonal array is selected for the analysis. Among the six control variables, thermal conductivity of the grouting material is observed to be the most influential parameter and tube radius of BHE as the least parameter in the optimized thermal effectiveness of the BHE. Both the experiments for space heating and cooling were conducted on a 17.5 kW cooling capacity ground source heat pump system (GSHP), connected with five parallelly connected double U-tube BHE and one single U-tube BHE. To compute the optimum heat transfer to/ from the BHE, time-dependent borehole temperature was incorporated to include the dynamic thermal load of the GSHP system. After incorporating the Taguchi-optimized thermal effectiveness in the experimental data, there is an enhancement of 30% to 48% of heat rejection into the ground during the summer season, whereas in the winter season, there is an enhancement of 35– 52% of heat extraction from the ground.

References

1.
Lucia
,
U.
,
Simonetti
,
M.
,
Chiesa
,
G.
, and
Grisolia
,
G.
,
2017
, “
Ground-Source Pump System for Heating and Cooling: Review and Thermodynamic Approach
,”
Renewable Sustainable Energy Rev.
,
70
, pp.
867
874
.
2.
Ünal
,
F.
,
Temir
,
G.
, and
Köten
,
H.
,
2018
, “
Exergoeconomic Analysis of Solar-Energy, Exergy and Assisted Vertical Ground Source Heat Pump System for Heating Season
,”
J. Mech. Sci. Technol.
,
32
(
8
), pp.
3929
3942
.
3.
Rad
,
F. M.
,
Fung
,
A. S.
, and
Rosen
,
M. A.
,
2017
, “
An Integrated Model for Designing a Solar Community Heating System With Borehole Thermal Storage
,”
Energy Sustainable Dev.
,
36
, pp.
6
15
.
4.
Luo
,
Y.
,
Cheng
,
N.
, and
Xu
,
G.
,
2022
, “
Analytical Modeling and Thermal Analysis of Deep Coaxial Borehole Heat Exchanger With Stratified-Seepage-Segmented Finite Line Source Method (S3-FLS)
,”
Energy Build.
,
257
, p.
111795
.
5.
Liang
,
B.
,
Chen
,
M.
, and
Orooji
,
Y.
,
2022
, “
Effective Parameters on the Performance of Ground Heat Exchangers: A Review of Latest Advances
,”
Geothermics
,
98
, p.
102283
.
6.
Zhao
,
Z.
,
Lin
,
Y. F.
,
Stumpf
,
A.
, and
Wang
,
X.
,
2023
, “
Improving LEED-Certified Building Loads on Borehole Heat Exchangers by Coupling Subsurface Variables
,”
Appl. Therm. Eng.
,
224
, p.
120119
.
7.
Priarone
,
A.
,
Silenzi
,
F.
, and
Fossa
,
M.
,
2020
, “
Modelling Heat Pumps With Variable EER and COP in Energyplus: A Case Study Applied to Ground Source and Heat Recovery Heat Pump Systems
,”
Energies
,
13
(
4
), p.
794
.
8.
Shah
,
A.
, and
Krarti
,
M.
,
2022
, “
Energy Performance Evaluation of Shallow Ground Source Heat Pumps for Residential Buildings
,”
Energies
,
15
(
3
), pp.
1025
1030
.
9.
Zeng
,
H.
,
Diao
,
N.
, and
Fang
,
Z.
,
2003
, “
Efficiency of Vertical Geothermal Heat Exchangers in the Ground Source Heat Pump System
,”
J. Therm. Sci.
,
12
(
1
), pp.
77
81
.
10.
Diao
,
N. R.
,
Zeng
,
H. Y.
, and
Fang
,
Z. H.
,
2004
, “
Improvement in Modeling of Heat Transfer in Vertical Ground Heat Exchangers
,”
HVACR Res
,
10
(
4
), pp.
459
470
.
11.
Kerme
,
E. D.
, and
Fung
,
A. S.
,
2020
, “
Heat Transfer Simulation, Analysis and Performance Study of Single U-Tube Borehole Heat Exchanger
,”
Renewable Energy
,
145
, pp.
1430
1448
.
12.
Cui
,
P.
,
Jia
,
L.
,
Zhou
,
X.
,
Yang
,
W.
, and
Zhang
,
W.
,
2020
, “
Heat Transfer Analysis of Energy Piles With Parallel U-Tubes
,”
Renewable Energy
,
161
, pp.
1046
1058
.
13.
Gao
,
Z.
,
Hu
,
Z.
,
Chen
,
T.
,
Xu
,
X.
,
Feng
,
J.
,
Zhang
,
Y.
,
Su
,
Q.
, and
Ji
,
D.
,
2022
, “
Comparison of Influencing Factors on Heat Transfer Efficiency for Borehole Heat Exchangers Based on Thermal Response Test in Linqu County, Shandong Province, China
,”
SSRN Electron. J.
,
8
, pp.
5570
5579
.
14.
Bigdelou
,
P.
,
Pourfayaz
,
F.
, and
Noorollahi
,
Y.
,
2019
, “
Investigating the Effect of Soil Type and Moisture on the Performance of a Ground Source Heat Pump System Used for a Greenhouse in Iran
,”
ASME J. Therm. Sci. Eng. Appl.
,
11
(
1
), p.
011009
.
15.
Wang
,
R.
,
Yang
,
C.
,
Ni
,
L.
, and
Yao
,
Y.
,
2020
, “
Experimental Study on Heat Transfer of Soil With Different Moisture Contents and Seepage for Ground Source Heat Pump
,”
Indoor Built Environ.
,
29
(
9
), pp.
1238
1248
.
16.
Javed
,
S.
, and
Spitler
,
J.
,
2017
, “
Accuracy of Borehole Thermal Resistance Calculation Methods for Grouted Single U-Tube Ground Heat Exchangers
,”
Appl. Energy
,
187
, pp.
790
806
.
17.
Luo
,
J.
,
Tuo
,
J.
,
Huang
,
W.
,
Zhu
,
Y. Q.
,
Jiao
,
Y. Y.
,
Xiang
,
W.
, and
Rohn
,
J.
,
2018
, “
Influence of Groundwater Levels on Effective Thermal Conductivity of the Ground and Heat Transfer Rate of Borehole Heat Exchangers
,”
Appl. Therm. Eng.
,
128
, pp.
508
516
.
18.
Guo
,
L.
,
Zhang
,
J.
,
Li
,
Y.
,
McLennan
,
J.
,
Zhang
,
Y.
, and
Jiang
,
H.
,
2021
, “
Experimental and Numerical Investigation of the Influence of Groundwater Flow on the Borehole Heat Exchanger Performance: A Case Study From Tangshan, China
,”
Energy Build.
,
248
, p.
111199
.
19.
Meng
,
B.
,
Vienken
,
T.
,
Kolditz
,
O.
, and
Shao
,
H.
,
2019
, “
Evaluating the Thermal Impacts and Sustainability of Intensive Shallow Geothermal Utilization on a Neighborhood Scale: Lessons Learned From a Case Study
,”
Energy Convers. Manage.
,
199
, p.
111913
.
20.
Deng
,
J.
,
Wei
,
Q.
,
He
,
S.
,
Liang
,
M.
, and
Zhang
,
H.
,
2020
, “
Simulation Analysis on the Heat Performance of Deep Borehole Heat Exchangers in Medium-Depth Geothermal Heat Pump Systems
,”
Energies
,
13
(
3
), p.
754
.
21.
Cai
,
W.
,
Wang
,
F.
,
Liu
,
J.
,
Wang
,
Z.
, and
Ma
,
Z.
,
2019
, “
Experimental and Numerical Investigation of Heat Transfer Performance and Sustainability of Deep Borehole Heat Exchangers Coupled With Ground Source Heat Pump Systems
,”
Appl. Therm. Eng.
,
149
, pp.
975
986
.
22.
Kumar
,
S.
, and
Murugesan
,
K.
,
2020
, “
Optimization of Geothermal Interaction of a Double U-Tube Borehole Heat Exchanger for Space Heating and Cooling Applications Using Taguchi Method and Utility Concept
,”
Geothermics
,
83
, p.
101723
.
23.
Ma
,
Z.
,
Xia
,
L.
,
Gong
,
X.
,
Kokogiannakis
,
G.
,
Wang
,
S.
, and
Zhou
,
X.
,
2020
, “
Recent Advances and Development in Optimal Design and Control of Ground Source Heat Pump Systems
,”
Renewable Sustainable Energy Rev.
,
131
, p.
110001
.
24.
Huang
,
S.
,
Ma
,
Z.
, and
Wang
,
F.
,
2015
, “
A Multi-Objective Design Optimization Strategy for Vertical Ground Heat Exchangers
,”
Energy Build.
,
87
, pp.
233
242
.
25.
Xia
,
L.
,
Ma
,
Z.
,
McLauchlan
,
C.
, and
Wang
,
S.
,
2017
, “
Experimental Investigation and Control Optimization of a Ground Source Heat Pump System
,”
Appl. Therm. Eng.
,
127
, pp.
70
80
.
26.
Huang
,
S.
,
Ma
,
Z.
, and
Cooper
,
P.
,
2014
, “
Optimal Design of Vertical Ground Heat Exchangers by Using Entropy Generation Minimization Method and Genetic Algorithms
,”
Energy Convers. Manage.
,
87
, pp.
128
137
.
27.
Huang
,
S.
,
Li
,
J.
,
Zhu
,
K.
,
Dong
,
J.
, and
Jiang
,
Y.
,
2023
, “
Multifactor Optimization of Medium and Deep U-Type Borehole Heat Exchanger Design Using Taguchi Method
,”
Geothermics
,
109
, p.
102644
.
28.
Jiang
,
J.
,
Wang
,
F.
,
Yang
,
X.
,
Zhang
,
Y.
,
Deng
,
J.
,
Wei
,
Q.
,
Cai
,
W.
, and
Chen
,
C.
,
2022
, “
Evaluation of the Long-Term Performance of the Deep U-Type Borehole Heat Exchanger on Different Geological Parameters Using the Taguchi Method
,”
J. Build. Eng.
,
59
, p.
105122
.
29.
Zhou
,
K.
,
Mao
,
J.
,
Li
,
Y.
, and
Xiang
,
J.
,
2019
, “
Parameters Optimization of Borehole and Internal Thermal Resistance for Single U-Tube Ground Heat Exchangers Using Taguchi Method
,”
Energy Convers. Manage.
,
201
, p.
112177
.
30.
Özdemir
,
M. B.
, and
Acir
,
A.
,
2020
, “
Optimization of the Effective Parameters on Ground-Source Heat Pumps for Space Cooling Applications Using the Taguchi Method
,”
Heat Transf. Res.
,
51
(
7
), pp.
537
550
.
31.
Li
,
C.
,
Guan
,
Y.
,
Feng
,
Y.
,
Jiang
,
C.
,
Zhen
,
S.
, and
Su
,
X.
,
2021
, “
Comparison of Influencing Factors and Level Optimization for Heating Through Deep-Buried Pipe Based on Taguchi Method
,”
Geothermics
,
91
, p.
102045
.
32.
Cai
,
W.
,
Wang
,
F.
,
Chen
,
S.
,
Chen
,
C.
,
Zhang
,
Y.
,
Kolditz
,
O.
, and
Shao
,
H.
,
2022
, “
Importance of Long-Term Ground-Loop Temperature Variation in Performance Optimization of Ground Source Heat Pump System
,”
Appl. Therm. Eng.
,
204
, p.
117945
.
33.
Wang
,
Y.
,
Wang
,
Y.
,
You
,
S.
,
Zheng
,
X.
, and
Wei
,
S.
,
2022
, “
Operation Optimization of the Coaxial Deep Borehole Heat Exchanger Coupled With Ground Source Heat Pump for Building Heating
,”
Appl. Therm. Eng.
,
213
, p.
118656
.
34.
Shen
,
J.
,
Zhou
,
C.
,
Luo
,
Y.
,
Tian
,
Z.
,
Zhang
,
S.
,
Fan
,
J.
, and
Ling
,
Z.
,
2023
, “
Comprehensive Thermal Performance Analysis and Optimization Study on U-Type Deep Borehole Ground Source Heat Pump Systems Based on a New Analytical Model
,”
Energy
,
274
, p.
127367
.
35.
Zeng
,
H.
,
Diao
,
N.
, and
Fang
,
Z.
,
2003
, “
Heat Transfer Analysis of Boreholes in Vertical Ground Heat Exchangers
,”
Int. J. Heat Mass Transfer
,
46
(
23
), pp.
4467
4481
.
36.
Du
,
C.
, and
Chen
,
Y.
,
2011
, “
An Average Fluid Temperature to Estimate Borehole Thermal Resistance of Ground Heat Exchanger
,”
Renewable Energy
,
36
(
6
), pp.
1880
1885
.
37.
Rees
,
S.
,
2016
,
Advances in Ground-Source Heat Pump Systems
,
Woodhead Publishing
,
Sawston, UK
.
38.
Mokry
,
S.
,
Pioro
,
I.
,
Farah
,
A.
,
King
,
K.
,
Gupta
,
S.
,
Peiman
,
W.
, and
Kirillov
,
P.
,
2011
, “
Development of Supercritical Water Heat-Transfer Correlation for Vertical Bare Tubes
,”
Nucl. Eng. Des.
,
241
(
4
), pp.
1126
1136
.
39.
Conti
,
P.
,
Testi
,
D.
, and
Grassi
,
W.
,
2016
, “
Revised Heat Transfer Modeling of Double-U Vertical Ground-Coupled Heat Exchangers
,”
Appl. Therm. Eng.
,
106
, pp.
1257
1267
.
40.
Ross
,
P. J.
,
1988
,
Taguchi Techniques for Quality Engineering: Loss Function, Orthogonal Experiments, Parameter and Tolerance Design
,
Mc-Graw-Hill
,
New York
.
41.
Sah
,
S. K.
,
Murugesan
,
K.
, and
Elangovan
,
R.
,
2021
, “
Optimization of Energy Consumption for Indoor Climate Control Using Taguchi Technique and Utility Concept
,”
Sci. Technol. Built Environ.
,
27
(
10
), pp.
1473
1491
.
42.
Palange
,
R.
, and
Krishnan
,
M.
,
2021
, “
Coal Gasification Process Optimization for Maximum Calorific Value and Minimum CO2 Emission Using Taguchi Method and Utility Concept
,”
Int. J. Energy Environ. Eng.
,
12
(
2
), pp.
335
351
.
43.
Kumar
,
S.
, and
Murugesan
,
K.
,
2022
, “
Experimental Study of Heat Extraction and Soil Recovery During Space Heating Application Using Ground Source Heat Pump System
,”
ASME J. Therm. Sci. Eng. Appl.
,
14
(
11
), p.
111004
.
44.
Holman
,
J. P.
,
2011
,
Experimental Methods for Engineers
, 8th ed.,
McGraw-Hill Series in Mechanical Engineering
,
McGraw Hill Professional, New York
, pp.
64
65
.
45.
Kumar
,
S.
, and
Murugesan
,
K.
,
2022
, “
Experimental Investigation of Effectiveness Variation of Borehole Heat Exchangers for Cooling Mode Operation
,”
Ther. Sci. Eng. Prog.
,
34
, p.
101441
.
You do not currently have access to this content.