Abstract

In this paper, a review of the current literature in modeling urban heat island (UHI) phenomena including its main causes and effects is summarized. The main goal of the review is to assess the current modeling capabilities to accurately determine the impacts of UHI on outdoor comfort levels and urban building energy demands. In particular, the analysis techniques and modeling approaches are overviewed to estimate the mutual thermal interactions between urban atmosphere and buildings. In addition, the applications and the limitations of various modeling methods are discussed to predict outdoor thermal comfort and urban building energy consumption. The specific capabilities of the reviewed modeling approaches are highlighted to assess the effectiveness of mitigation strategies of the UHI effects. As part of the review analysis, recommendations are outlined to improve current modeling approaches to predict more accurately the impacts of UHI phenomena on urban building energy performance.

References

1.
Baklanov
,
A.
,
Lawrence
,
M.
,
Pandis
,
S.
,
Mahura
,
A.
,
Finardi
,
S.
,
Moussiopoulos
,
N.
,
Beekmann
,
M.
, et al
,
2010
, “
MEGAPOLI: Concept of Multi-Scale Modelling of Megacity Impact on Air Quality and Climate
,”
Adv. Sci. Res.
,
4
(
1
), pp.
115
120
.
2.
UN-HABITAT
,
2013
, “
State of the World’s Cites 2012/2013: United Nations Human Settlements Programme
,”
United Nations Hum. Settlements Program
,
Nairobi, Kenya
, p.
152
.
3.
United Nations
,
2014
, World Urbanization Prospects: The 2014 Revision, Highlights (ST/ESA/SER.A/352), Department of Economic and Social Affairs, Population Division, United Nations, New York.
4.
Madlener
,
R.
, and
Sunak
,
Y.
,
2011
, “
Impacts of Urbanization on Urban Structures and Energy Demand: What Can We Learn for Urban Energy Planning and Urbanization Management?
,”
Sustain. Cities Soc.
,
1
(
1
), pp.
45
53
.
5.
Duarte
,
D. H. S.
,
Shinzato
,
P.
,
Gusson
,
C. d. S.
, and
Alves
,
C. A.
,
2015
, “
The Impact of Vegetation on Urban Microclimate to Counterbalance Built Density in a Subtropical Changing Climate
,”
Urban Clim.
,
14
(Part 2), pp.
224
239
.
6.
Imhoff
,
M. L.
,
Zhang
,
P.
,
Wolfe
,
R. E.
, and
Bounoua
,
L.
,
2010
, “
Remote Sensing of the Urban Heat Island Effect Across Biomes in the Continental USA
,”
Remote Sens. Environ.
,
114
(
3
), pp.
504
513
.
7.
Landsberg
,
H. E.
,
1981
,
The Urban Climate
,
Academic Press, Inc
,
New York
.
8.
Arnfield
,
A. J.
,
2003
, “
Two Decades of Urban Climate Research: A Review of Turbulence, Exchanges of Energy and Water, and the Urban Heat Island
,”
Int. J. Climatol.
,
23
(
1
), pp.
1
26
.
9.
Stewart
,
I. D.
,
2011
, “
A Systematic Review and Scientific Critique of Methodology in Modern Urban Heat Island Literature
,”
Int. J. Climatol.
,
31
(
2
), pp.
200
217
.
10.
Aguilar
,
E.
,
Auer
,
I.
,
Brunet
,
M.
,
Peterson
,
T. C.
, and
Wieringa
,
J.
,
2003
, “
Guidance on Metadata and Homogenization
,”
Wmo Td
,
1186
(
Oct.
), p.
53
.
11.
Oke
,
T. R.
,
2004
, “
Initial Guidance to Obtain Representative Meteorological Observations at Urban Sites
,”
World Meteorol. Organ.
,
81
, p.
51
, WMO/TD No. 1250, Geneva, Switzerland.
12.
Mirzaei
,
P. A.
, and
Haghighat
,
F.
,
2010
, “
Approaches to Study Urban Heat Island—Abilities and Limitations
,”
Build. Environ.
,
45
(
10
), pp.
2192
2201
.
13.
Kalkstein
,
L. S.
, and
Davis
,
R. E.
,
1989
, “
Weather and Human Mortality: An Evaluation of Demographic and Interregional Responses in the United States
,”
Ann. Assoc. Am. Geogr.
,
79
(
1
), pp.
44
64
.
14.
Thorsson
,
S.
,
Lindberg
,
F.
,
Björklund
,
J.
,
Holmer
,
B.
, and
Rayner
,
D.
,
2011
, “
Potential Changes in Outdoor Thermal Comfort Conditions in Gothenburg, Sweden Due to Climate Change: The Influence of Urban Geometry
,”
Int. J. Climatol.
,
31
(
2
), pp.
324
335
.
15.
Ohashi
,
Y.
,
Ihara
,
T.
,
Kikegawa
,
Y.
, and
Sugiyama
,
N.
,
2016
, “
Numerical Simulations of Influence of Heat Island Countermeasures on Outdoor Human Heat Stress in the 23 Wards of Tokyo, Japan
,”
Energy Build.
,
114
, pp.
104
111
.
16.
Bueno
,
B.
,
Norford
,
L.
,
Pigeon
,
G.
, and
Britter
,
R.
,
2011
, “
Combining a Detailed Building Energy Model With a Physically-Based Urban Canopy Model
,”
Bound.-Layer Meteorol.
,
140
(
3
), pp.
471
489
.
17.
Kolokotroni
,
M.
,
Davies
,
M.
,
Croxford
,
B.
,
Bhuiyan
,
S.
, and
Mavrogianni
,
A.
,
2010
, “
A Validated Methodology for the Prediction of Heating and Cooling Energy Demand for Buildings Within the Urban Heat Island: Case-Study of London
,”
Sol. Energy
,
84
(
12
), pp.
2246
2255
.
18.
Salamanca
,
F.
,
Georgescu
,
M.
,
Mahalov
,
A.
,
Moustaoui
,
M.
, and
Wang
,
M.
,
2014
, “
Anthropogenic Heating of the Urban Environment Due to Air Conditioning
,”
J. Geophys. Res. Atmos.
,
119
(
10
), pp.
5949
5965
.
19.
Kuttler
,
W.
,
2008
, “The Urban Climate–Basic and Applied Aspects,”
Urban Ecology
,
Springer
,
Boston, MA
, pp.
233
248
.
20.
Kondo
,
A.
,
Ueno
,
M.
,
Kaga
,
A.
, and
Yamaguchi
,
K.
,
2001
, “
The Influence of Urban Canopy Configuration on Urban Albedo
,”
Bound.-Layer Meteorol
,
100
(
2
), pp.
225
242
.
21.
de Munck
,
C.
,
Pigeon
,
G.
,
Masson
,
V.
,
Meunier
,
F.
,
Bousquet
,
P.
,
Tréméac
,
B.
,
Merchat
,
M.
,
Poeuf
,
P.
, and
Marchadier
,
C.
,
2013
, “
How Much Can Air Conditioning Increase Air Temperatures for a City Like Paris, France?
,”
Int. J. Climatol.
,
33
(
1
), pp.
210
227
.
22.
Bueno
,
B.
,
Norford
,
L.
,
Hidalgo
,
J.
, and
Pigeon
,
G.
,
2013
, “
The Urban Weather Generator
,”
J. Build. Perform. Simul.
,
6
(
Nov.
), pp.
269
281
.
23.
Coseo
,
P.
, and
Larsen
,
L.
,
2014
, “
How Factors of Land use/Land Cover, Building Configuration, and Adjacent Heat Sources and Sinks Explain Urban Heat Islands in Chicago
,”
Landsc. Urban Plan.
,
125
, pp.
117
129
.
24.
Brian Stone
,
J.
,
2012
,
The City and the Coming Climate: Climate Change in the Places We Live
,
Cambridge University Press
,
Cambridge, UK
.
25.
Bernabé
,
A.
,
Musy
,
M.
,
Andrieu
,
H.
, and
Calmet
,
I.
,
2015
, “
Radiative Properties of the Urban Fabric Derived From Surface Form Analysis: A Simplified Solar Balance Model
,”
Sol. Energy
,
122
, pp.
156
168
.
26.
Lobaccaro
,
G.
,
Fiorito
,
F.
,
Masera
,
G.
, and
Poli
,
T.
,
2012
, “
District Geometry Simulation: A Study for the Optimization of Solar Facades in Urban Canopy Layers
,”
Energy Procedia
,
30
, pp.
1163
1172
.
27.
Chow
,
W. T. L.
,
Salamanca
,
F.
,
Georgescu
,
M.
,
Mahalov
,
A.
,
Milne
,
J. M.
, and
Ruddell
,
B. L.
,
2014
, “
A Multi-Method and Multi-Scale Approach for Estimating City-Wide Anthropogenic Heat Fluxes
,”
Atmos. Environ.
,
99
, pp.
64
76
.
28.
Zhang
,
G. J.
,
Cai
,
M.
, and
Hu
,
A.
,
2013
, “
Energy Consumption and the Unexplained Winter Warming Over Northern Asia and North America
,”
Nat. Clim. Change
,
3
(
5
), pp.
466
470
.
29.
Sailor
,
D. J.
,
2011
, “
A Review of Methods for Estimating Anthropogenic Heat and Moisture Emissions in the Urban Environment
,”
Int. J. Climatol.
,
31
(
2
), pp.
189
199
.
30.
Quah
,
A. K. L.
, and
Roth
,
M.
,
2012
, “
Diurnal and Weekly Variation of Anthropogenic Heat Emissions in a Tropical City, Singapore
,”
Atmos. Environ.
,
46
, pp.
92
103
.
31.
Pigeon
,
G.
,
Zibouche
,
K.
,
Bueno
,
B.
,
Le Bras
,
J.
, and
Masson
,
V.
,
2014
, “
Improving the Capabilities of the Town Energy Balance Model With Up-to-Date Building Energy Simulation Algorithms: An Application to a Set of Representative Buildings in Paris
,”
Energy Build.
,
76
, pp.
1
14
.
32.
Salamanca
,
F.
,
Georgescu
,
M.
,
Mahalov
,
A.
,
Moustaoui
,
M.
,
Wang
,
M.
, and
Svoma
,
B. M.
,
2013
, “
Assessing Summertime Urban Air Conditioning Consumption in a Semiarid Environment
,”
Environ. Res. Lett.
,
8
(
3
), p.
034022
.
33.
Martilli
,
A.
,
Clappier
,
A.
, and
Rotach
,
M. W.
,
2002
, “
An Urban Surface Exchange Parameterisation for Mesoscale Models
,”
Bound.-Layer Meteorol.
,
104
(
2
), pp.
261
304
.
34.
Martilli
,
A.
,
2009
, “
On the Derivation of Input Parameters for Urban Canopy Models From Urban Morphological Datasets
,”
Bound.-Layer Meteorol.
,
130
(
2
), pp.
301
306
.
35.
Allegrini
,
J.
,
Dorer
,
V.
, and
Carmeliet
,
J.
,
2015
, “
Coupled CFD, Radiation and Building Energy Model for Studying Heat Fluxes in an Urban Environment With Generic Building Configurations
,”
Sustain. Cities Soc.
,
19
, pp.
385
394
.
36.
Bueno
,
B.
,
Norford
,
L.
,
Pigeon
,
G.
, and
Britter
,
R.
,
2012
, “
A Resistance-Capacitance Network Model for the Analysis of the Interactions Between the Energy Performance of Buildings and the Urban Climate
,”
Build. Environ.
,
54
, pp.
116
125
.
37.
Thapar
,
H.
, and
Yannas
,
S.
,
2008
, “
Microclimate and Urban Form in Dubai
,”
PLEA 2008–25th Conference on Passive and Low Energy Architecture
,
Dublin, Ireland
,
Oct. 22–24
, pp.
20
25
.
38.
“ENVI-met.”
2004
, https://www.envi-met.com/, Accessed September 20, 2019.
39.
Hedquist
,
B. C.
, and
Brazel
,
A. J.
,
2014
, “
Seasonal Variability of Temperatures and Outdoor Human Comfort in Phoenix, Arizona, U.S.A
,”
Build. Environ.
,
72
, pp.
377
388
.
40.
Rajagopalan
,
P.
,
Lim
,
K. C.
, and
Jamei
,
E.
,
2014
, “
Urban Heat Island and Wind Flow Characteristics of a Tropical City
,”
Sol. Energy
,
107
, pp.
159
170
.
41.
Gros
,
A.
,
Bozonnet
,
E.
,
Inard
,
C.
, and
Musy
,
M.
,
2016
, “
Simulation Tools to Assess Microclimate and Building Energy—A Case Study on the Design of a new District
,”
Energy Build.
,
114
, pp.
112
122
.
42.
Ng
,
E.
,
Chen
,
L.
,
Wang
,
Y.
, and
Yuan
,
C.
,
2012
, “
A Study on the Cooling Effects of Greening in a High-Density City: An Experience From Hong Kong
,”
Build. Environ.
,
47
(
1
), pp.
256
271
.
43.
Hall
,
T. C.
,
Britter
,
R. E.
, and
Norford
,
L. K.
,
2012
, “
Predicting Velocities and Turbulent Momentum Exchange in Isolated Street Canyons
,”
Atmos. Environ.
,
59
, pp.
75
85
.
44.
Li
,
X. X.
,
Liu
,
C. H.
,
Leung
,
D. Y. C.
, and
Lam
,
K. M.
,
2006
, “
Recent Progress in CFD Modelling of Wind Field and Pollutant Transport in Street Canyons
,”
Atmos. Environ.
,
40
(
29
), pp.
5640
5658
.
45.
Baik
,
J. J.
, and
Kim
,
J. J.
,
1999
, “
A Numerical Study of Flow and Pollutant Dispersion Characteristics in Urban Street Canyons
,”
J. Appl. Meteorol.
,
38
(
11
), pp.
1576
1589
.
46.
Soulhac
,
L.
,
Garbero
,
V.
,
Salizzoni
,
P.
,
Mejean
,
P.
, and
Perkins
,
R. J.
,
2009
, “
Flow and Dispersion in Street Intersections
,”
Atmos. Environ.
,
43
(
18
), pp.
2981
2996
.
47.
Oke
,
T. R.
,
1988
, “
Street Design and Urban Canopy Layer Climate
,”
Energy Build.
,
11
(
1–3
), pp.
103
113
.
48.
Sini
,
J. F.
,
Anquetin
,
S.
, and
Mestayer
,
P. G.
,
1996
, “
Pollutant Dispersion and Thermal Effects in Urban Street Canyons
,”
Atmos. Environ.
,
30
(
15
), pp.
2659
2677
.
49.
Kim
,
J. J.
, and
Baik
,
J. J.
,
2001
, “
Urban Street-Canyon Flows With Bottom Heating
,”
Atmos. Environ.
,
35
(
20
), pp.
3395
3404
.
50.
He
,
L.
,
Hang
,
J.
,
Wang
,
X.
,
Lin
,
B.
,
Li
,
X.
, and
Lan
,
G.
,
2017
, “
Numerical Investigations of Flow and Passive Pollutant Exposure in High-Rise Deep Street Canyons With Various Street Aspect Ratios and Viaduct Settings
,”
Sci. Total Environ.
,
584
, pp.
189
206
.
51.
Raasch
,
S.
, and
Schröter
,
M.
,
2001
, “
PALM—A Large-Eddy Simulation Model Performing on Massively Parallel Computers
,”
Meteorol. Zeitschrift
,
10
(
5
), pp.
363
372
.
52.
Keck
,
M.
,
Raasch
,
S.
,
Letzel
,
M. O.
, and
Ng
,
E.
,
2014
, “
First Results of High Resolution Large-Eddy Simulations of the Atmospheric Boundary Layer
,”
J. Heat Isl. Inst. Int.
,
9
(
2
), pp.
39
43
.
53.
Vardoulakis
,
S.
,
Fisher
,
B. E. A.
,
Pericleous
,
K.
, and
Gonzalez-Flesca
,
N.
,
2003
, “
Modelling Air Quality in Street Canyons: A Review
,”
Atmos. Environ.
,
37
(
2
), pp.
155
182
.
54.
Li
,
X. X.
,
Britter
,
R. E.
,
Koh
,
T. Y.
,
Norford
,
L. K.
,
Liu
,
C. H.
,
Entekhabi
,
D.
, and
Leung
,
D. Y.
,
2010
, “
Large-Eddy Simulation of Flow and Pollutant Transport in Urban Street Canyons With Ground Heating
,”
Bound.-Layer Meteorol.
,
137
(
2
), pp.
187
204
.
55.
Nazarian
,
N.
, and
Kleissl
,
J.
,
2016
, “
Realistic Solar Heating in Urban Areas: Air Exchange and Street-Canyon Ventilation
,”
Build. Environ.
,
95
, pp.
75
93
.
56.
Thaker
,
P.
, and
Gokhale
,
S.
,
2016
, “
The Impact of Traffic-Flow Patterns on Air Quality in Urban Street Canyons
,”
Environ. Pollut.
,
208
, pp.
161
169
.
57.
Dobre
,
A.
,
Arnold
,
S. J.
,
Smalley
,
R. J.
,
Boddy
,
J. W. D.
,
Barlow
,
J. F.
,
Tomlin
,
A. S.
, and
Belcher
,
S. E.
,
2005
, “
Flow Field Measurements in the Proximity of an Urban Intersection in London, UK
,”
Atmos. Environ.
,
39
(
26
), pp.
4647
4657
.
58.
Soulhac
,
L.
,
Perkins
,
R. J.
, and
Salizzoni
,
P.
,
2008
, “
Flow in a Street Canyon for Any External Wind Direction
,”
Bound.-Layer Meteorol.
,
126
(
3
), pp.
365
388
.
59.
Huang
,
H.
,
Akutsu
,
Y.
,
Arai
,
M.
, and
Tamura
,
M.
,
2000
, “
A Two-Dimensional Air Quality Model in an Urban Street Canyon: Evaluation and Sensitivity Analysis
,”
Atmos. Environ.
,
34
(
5
), pp.
689
698
.
60.
Wang
,
W.
,
Raasch
,
S.
,
Yim
,
S.
,
Ho
,
J.
, and
Ng
,
E.
,
2015
, “
Parametric Studies of Urban Morphologies of High Density Cities and Their Air Ventilation Performance Under Neutral and Unstable Atmospheric Conditions Using Advanced Large-Eddy Simulations
,”
The 9th International Conference on Urban Climate (ICUC)
,
Toulouse, France
,
July 20–24
, pp.
1
18
.
61.
Gutiérrez
,
E.
,
Martilli
,
A.
,
Santiago
,
J. L.
, and
González
,
J. E.
,
2015
, “
A Mechanical Drag Coefficient Formulation and Urban Canopy Parameter Assimilation Technique for Complex Urban Environments
,”
Bound.-Layer Meteorol.
,
157
(
2
), pp.
333
341
.
62.
Taha
,
H.
,
2013
, “
The Potential for Air-Temperature Impact From Large-Scale Deployment of Solar Photovoltaic Arrays in Urban Areas
,”
Sol. Energy
,
91
, pp.
358
367
.
63.
Cortes
,
A.
,
Murashita
,
Y.
,
Matsuo
,
T.
,
Kondo
,
A.
,
Shimadera
,
H.
, and
Inoue
,
Y.
,
2015
, “
Numerical Evaluation of the Effect of Photovoltaic Cell Installation on Urban Thermal Environment
,”
Sustain. Cities Soc.
,
19
, pp.
250
258
.
64.
Masson
,
V.
,
Bonhomme
,
M.
,
Salagnac
,
J.-L.
,
Briottet
,
X.
, and
Lemonsu
,
A.
,
2014
, “
Solar Panels Reduce Both Global Warming and Urban Heat Island
,”
Front. Environ. Sci.
,
2
(
June
), pp.
1
10
.
65.
Tian
,
W.
,
Wang
,
Y.
,
Xie
,
Y.
,
Wu
,
D.
,
Zhu
,
L.
, and
Ren
,
J.
,
2007
, “
Effect of Building Integrated Photovoltaics on Microclimate of Urban Canopy Layer
,”
Build. Environ.
,
42
(
5
), pp.
1891
1901
.
66.
Lobaccaro
,
G.
,
Fiorito
,
F.
,
Masera
,
G.
, and
Prasad
,
D.
,
2012
, “
Urban Solar District: A Case Study of Geometric Optimization
of Solar Façades for a Residential Building in Milan
,”
50th Annual Conference, Australian Solar Energy Society
,
Melbourne, Australia
,
Dec. 6–7
,
Australian Solar Energy Society
, pp.
1
10
.
67.
Hamdi
,
R.
,
Kusaka
,
H.
,
Doan
,
Q. V.
,
Cai
,
P.
,
He
,
H.
,
Luo
,
G.
,
Kuang
,
W.
, et al
,
2020
, “
The State-of-the-Art of Urban Climate Change Modeling and Observations
,”
Earth Syst. Environ.
,
4
(
4
), pp.
631
646
.
68.
Mirzaei
,
P. A.
,
2015
, “
Recent Challenges in Modelling of Urban Heat Island
,”
Sustain. Cities Soc.
,
19
, pp.
200
206
.
69.
Ichinose
,
T.
,
Shimodozono
,
K.
, and
Hanaki
,
K.
,
1999
, “
Impact of Anthropogenic Heat on Urban Climate in Tokyo
,”
Atmos. Environ.
,
33
(
24–25
), pp.
3897
3909
.
70.
Pielke
,
R. A.
,
1973
,
A Three-Dimensional Numerical Model of the Sea Breezes Over South Florida
,
American Meteorological Society
,
Boston, MA
.
71.
Masson
,
V.
,
2000
, “
A Physically-Based Scheme for the Urban Energy Budget in Atmospheric Models
,”
Bound.-Layer Meteorol.
,
94
(
3
), pp.
357
397
.
72.
Kusaka
,
H.
,
Kondo
,
H.
,
Kikegawa
,
Y.
, and
Kimura
,
F.
,
2001
, “
A Simple Single-Layer Urban Canopy Model for Atmospheric Models: Comparison With Multi-Layer and Slab Models
,”
Bound.-Layer Meteorol.
,
101
(
3
), pp.
329
358
.
73.
Salamanca
,
F.
,
Krpo
,
A.
,
Martilli
,
A.
, and
Clappier
,
A.
,
2010
, “
A New Building Energy Model Coupled With an Urban Canopy Parameterization for Urban Climate Simulations-Part I. Formulation, Verification, and Sensitivity Analysis of the Model
,”
Theor. Appl. Climatol.
,
99
(
3–4
), pp.
331
344
.
74.
Salamanca
,
F.
, and
Martilli
,
A.
,
2010
, “
A New Building Energy Model Coupled With an Urban Canopy Parameterization for Urban Climate Simulations-Part II. Validation With One Dimension off-Line Simulations
,”
Theor. Appl. Climatol.
,
99
(
3–4
), pp.
345
356
.
75.
Chen
,
F.
,
Kusaka
,
H.
,
Bornstein
,
R.
,
Ching
,
J.
,
Grimmond
,
C. S. B.
,
Grossman-Clarke
,
S.
,
Loridan
,
T.
, et al
,
2011
, “
The Integrated WRF/Urban Modelling System: Development, Evaluation, and Applications to Urban Environmental Problems
,”
Int. J. Climatol.
,
31
(
2
), pp.
273
288
.
76.
Kusaka
,
H.
,
Chen
,
F.
,
Tewari
,
M.
,
Dudhia
,
J.
,
Gill
,
D. O.
,
Duda
,
M. G.
,
Wang
,
W.
, and
Miya
,
Y.
,
2012
, “
Numerical Simulation of Urban Heat Island Effect by the WRF Model With 4-km Grid Increment: An Inter-Comparison Study Between the Urban Canopy Model and Slab Model
,”
J. Meteorol. Soc. Japan
,
90
, pp.
33
45
.
77.
Kusaka
,
H.
,
Hara
,
M.
, and
Takane
,
Y.
,
2012
, “
Urban Climate Projection by the WRF Model at 3-km Horizontal Grid Increment: Dynamical Downscaling and Predicting Heat Stress in the 2070’s August for Tokyo, Osaka, and Nagoya Metropolises
,”
J. Meteorol. Soc. Japan
,
90
, pp.
47
63
.
78.
Masson
,
V.
,
2006
, “
Urban Surface Modeling and the Meso-Scale Impact of Cities
,”
Theor. Appl. Climatol.
,
84
(
1–3
), pp.
35
45
.
79.
Chen
,
D.
,
Wang
,
X.
,
Thatcher
,
M.
,
Barnett
,
G.
,
Kachenko
,
A.
, and
Prince
,
R.
,
2014
, “
Urban Vegetation for Reducing Heat Related Mortality
,”
Environ. Pollut.
,
192
, pp.
275
284
.
80.
Klok
,
L.
,
Zwart
,
S.
,
Verhagen
,
H.
, and
Mauri
,
E.
,
2012
, “
The Surface Heat Island of Rotterdam and Its Relationship With Urban Surface Characteristics
,”
Resour. Conserv. Recycl.
,
64
, pp.
23
29
.
81.
Asawa
,
T.
,
Hoyano
,
A.
, and
Nakaohkubo
,
K.
,
2008
, “
Thermal Design Tool for Outdoor Spaces Based on Heat Balance Simulation Using a 3D-CAD System
,”
Build. Environ.
,
43
(
12
), pp.
2112
2123
.
82.
Quan
,
S. J.
,
Wu
,
J.
,
Wang
,
Y.
,
Shi
,
Z.
,
Yang
,
T.
, and
Yang
,
P. P.-J.
,
2016
, “
Urban Form and Building Energy Performance in Shanghai Neighborhoods
,”
Energy Procedia
,
88
, pp.
126
132
.
83.
Targhi
,
M. Z.
, and
Van Dessel
,
S.
,
2015
, “
Potential Contribution of Urban Developments to Outdoor Thermal Comfort Conditions: The Influence of Urban Geometry and Form in Worcester, Massachusetts, USA
,”
Procedia Eng.
,
118
, pp.
1153
1161
.
84.
Huber
,
J.
, and
Nytsch-Geusen
,
C.
,
2011
, “
Development of Modeling and Simulation Strategies for Large Scale Urban Districts
,”
Build. Simulation, Sydney Aust.
,
1753–1760
, pp.
14
16
.
85.
Cerezo Davila
,
C.
,
Reinhart
,
C. F.
, and
Bemis
,
J. L.
,
2016
, “
Modeling Boston: A Workflow for the Efficient Generation and Maintenance of Urban Building Energy Models From Existing Geospatial Datasets
,”
Energy
,
117
, pp.
237
250
.
86.
Reinhart
,
C. F.
, and
Cerezo Davila
,
C.
,
2016
, “
Urban Building Energy Modeling—A Review of a Nascent Field
,”
Build. Environ.
,
97
, pp.
196
202
.
87.
Kavgic
,
M.
,
Mavrogianni
,
A.
,
Mumovic
,
D.
,
Summerfield
,
A.
,
Stevanovic
,
Z.
, and
Djurovic-Petrovic
,
M.
,
2010
, “
A Review of Bottom-Up Building Stock Models for Energy Consumption in the Residential Sector
,”
Build. Environ.
,
45
(
7
), pp.
1683
1697
.
88.
Reinhart
,
C. F.
,
Dogan
,
T.
,
Jakubiec
,
J. A.
,
Rakha
,
T.
, and
Sang
,
A.
,
2013
, “
Umi—An Urban Simulation Environment for Building Energy Use, Daylighting and Walkability
,”
13th Conference of International Building Performance Simulation Association
,
Chambery, France
,
Aug. 25–28
, pp.
476
483
.
89.
Ahmad
,
A.
,
2004
, “
Energy Simulation for a Typical House Built With Different Types of Masonry Building Materials
,”
Arab. J. Sci. Eng.
,
29
(
2
), pp.
113
126
.
90.
Al-Ragom
,
F.
,
2003
, “
Retrofitting Residential Buildings in Hot and Arid Climates
,”
Energy Convers. Manage.
,
44
(
14
), pp.
2309
2319
.
91.
Alaidroos
,
A.
, and
Krarti
,
M.
,
2015
, “
Optimal Design of Residential Building Envelope Systems in the Kingdom of Saudi Arabia
,”
Energy Build.
,
86
, pp.
104
117
.
92.
Al-Homoud
,
M. S.
,
2004
, “
The Effectiveness of Thermal Insulation in Different Types of Buildings in Hot Climates
,”
J. Therm. Envel. Build. Sci.
,
27
(
3
), pp.
235
247
.
93.
Al-saadi
,
S. N.
, and
Budaiwi
,
I. M.
,
2007
, “
Performance-Based Envelope Design for Residential Buildings in Hot Climates
,”
Proceedings of Building Simulation
,
Beijing, China
,
Sept. 3–6
, pp.
1726
1733
.
94.
Ameer
,
B.
, and
Krarti
,
M.
,
2016
, “
Impact of Subsidization on High Energy Performance Designs for Kuwaiti Residential Buildings
,”
Energy Build.
,
116
, pp.
249
262
.
95.
Kikegawa
,
Y.
,
Genchi
,
Y.
,
Yoshikado
,
H.
, and
Kondo
,
H.
,
2003
, “
Development of a Numerical Simulation System Toward Comprehensive Assessments of Urban Warming Countermeasures Including Their Impacts Upon the Urban Buildings’ Energy-Demands
,”
Appl. Energy
,
76
(
4
), pp.
449
466
.
96.
Tanimoto
,
J.
,
Hagishima
,
A.
, and
Chimklai
,
P.
,
2004
, “
An Approach for Coupled Simulation of Building Thermal Effects and Urban Climatology
,”
Energy Build.
,
36
(
8
), pp.
781
793
.
97.
Bueno
,
B.
,
Pigeon
,
G.
,
Norford
,
L. K.
,
Zibouche
,
K.
, and
Marchadier
,
C.
,
2012
, “
Development and Evaluation of a Building Energy Model Integrated in the TEB Scheme
,”
Geosci. Model Dev.
,
5
(
2
), pp.
433
448
.
98.
Gros
,
A.
,
Bozonnet
,
E.
, and
Inard
,
C.
,
2014
, “
Cool Materials Impact at District Scale—Coupling Building Energy and Microclimate Models
,”
Sustain. Cities Soc.
,
13
, pp.
254
266
.
99.
Fonseca
,
J. A.
, and
Schlueter
,
A.
,
2015
, “
Integrated Model for Characterization of Spatiotemporal Building Energy Consumption Patterns in Neighborhoods and City Districts
,”
Appl. Energy
,
142
, pp.
247
265
.
100.
Rodriguez-Alvarez
,
J.
,
2016
, “
Urban Energy Index for Buildings (UEIB): A New Method to Evaluate the Effect of Urban Form on Buildings’ Energy Demand
,”
Landsc. Urban Plan.
,
148
, pp.
170
187
.
101.
Gracik
,
S.
,
Heidarinejad
,
M.
,
Liu
,
J.
, and
Srebric
,
J.
,
2015
, “
Effect of Urban Neighborhoods on the Performance of Building Cooling Systems
,”
Build. Environ.
,
90
, pp.
15
29
.
102.
Robinson
,
D.
,
Campbell
,
N.
,
Gaiser
,
W.
,
Kabel
,
K.
,
Le-Mouel
,
A.
,
Morel
,
N.
,
Page
,
J.
,
Stankovic
,
S.
, and
Stone
,
A.
,
2007
, “
SUNtool—A New Modelling Paradigm for Simulating and Optimising Urban Sustainability
,”
Sol. Energy
,
81
(
9
), pp.
1196
1211
.
103.
Ohashi
,
Y.
,
Kikegawa
,
Y.
,
Ihara
,
T.
, and
Sugiyama
,
N.
,
2014
, “
Numerical Simulations of Outdoor Heat Stress Index and Heat Disorder Risk in the 23 Wards of Tokyo
,”
J. Appl. Meteorol. Climatol.
,
53
(
3
), pp.
583
597
.
104.
Taleghani
,
M.
,
Kleerekoper
,
L.
,
Tenpierik
,
M.
, and
van den Dobbelsteen
,
A.
,
2014
, “
Outdoor Thermal Comfort Within Five Different Urban Forms in the Netherlands
,”
Build. Environ.
,
83
, pp.
65
78
.
105.
Suri
,
M.
, and
Hofierka
,
J.
,
2004
, “
A New GIS-Based Solar Radiation Model and Its Application to Photovoltaic Assessments
,”
Trans. GIS
,
8
(
2
), pp.
175
190
.
106.
Robinson
,
D.
, and
Stone
,
A.
,
2004
, “
Solar Radiation Modelling in the Urban Context
,”
Sol. Energy
,
77
(
3
), pp.
295
309
.
107.
Chow
,
W. T. L.
, and
Brazel
,
A. J.
,
2012
, “
Assessing Xeriscaping as a Sustainable Heat Island Mitigation Approach for a Desert City
,”
Build. Environ.
,
47
(
1
), pp.
170
181
.
108.
Declet-Barreto
,
J.
,
Brazel
,
A. J.
,
Martin
,
C. A.
,
Chow
,
W. T. L.
, and
Harlan
,
S. L.
,
2013
, “
Creating the Park Cool Island in an Inner-City Neighborhood: Heat Mitigation Strategy for Phoenix, AZ
,”
Urban Ecosyst.
,
16
(
3
), pp.
617
635
.
109.
Scherba
,
A.
,
Sailor
,
D. J.
,
Rosenstiel
,
T. N.
, and
Wamser
,
C. C.
,
2011
, “
Modeling Impacts of Roof Reflectivity, Integrated Photovoltaic Panels and Green Roof Systems on Sensible Heat Flux Into the Urban Environment
,”
Build. Environ.
,
46
(
12
), pp.
2542
2551
.
You do not currently have access to this content.