Abstract

Bifacial modules are highly valued in the global photovoltaic market since they are able to receive sunlight from both sides and can generate up to 10–30% additional energy compared to monofacial ones. They are integrated into various sectors, including building and notably Agrivoltaics. In this work, a coupled optical–thermal–electrical model was developed in matlab to simulate the energy performance and bifacial gain for a ground-raised bifacial system. The model allows optimization as a function of the photovoltaic (PV) system and bifacial module characteristics. A fixed, south-facing bifacial PV arrays composed of three rows assumed installed in Agadir, Morocco, is considered. The optical model is based on an analytical determination of view factors using the cross-string rule. These enable the determination of irradiances received by both sides of modules, which are subsequently used to evaluate energy yield of the system. Model validation was carried out based on various statistical metrics by comparing our results with simulation results generated by various softwares. The comparison shows a very good agreement, notably with 3dbifacialvf (R2 = 1, root-mean-square error (RMSE) = 0.03 W/m2 and R2 = 0.96, RMSE = 12.4 W/m2) for front and rear side irradiance, respectively. The DC energy generated by the system differs by less than 1% compared to pvsyst results. Sensitivity analysis revealed that all system parameters, particularly ground albedo, positively affect the bifacial gain. The bifacial gain increased from 10.6% to 20.1% as the ground albedo increased from 0.25 to 0.5.

References

1.
Sadek
,
S.
,
Deng
,
S.
,
Zhao
,
J.
, and
Zayed
,
M. E.
,
2022
, “
Solar-Powered Adsorption-Based Atmospheric Water Harvesting Systems: Principles, Materials, Performance Analysis, and Configurations
,”
Sustain. Energy Technol. Assess.
,
54
(
1
), p.
102874
.
2.
statista.com
,
2024
, “Solar PV Energy Demand Globally 2015–2024|Statista,” https://www.statista.com/statistics/500250/solar-photovoltaic-demand-outlook-worldwide/, Accessed March 4, 2024.
3.
International Technology Roadmap for Photovoltaic
,
2019
, “ITRPV 2018 Results, 10th ed.,” VDMA, https://pv-manufacturing.org/wp-content/uploads/2019/03/ITRPV-2019.pdf, Accessed February 24, 2024.
4.
Vimala
,
M.
,
Ramadas
,
G.
,
Perarasi
,
M.
,
Manokar
,
A. M.
, and
Sathyamurthy
,
R.
,
2023
, “
A Review of Different Types of Solar Cell Materials Employed in Bifacial Solar Photovoltaic Panel
,”
Energies
,
16
(
8
), p.
3605
.
5.
Rodríguez-Gallegos
,
C. D.
,
Bieri
,
M.
,
Gandhi
,
O.
,
Singh
,
J. P.
,
Reindl
,
T.
, and
Panda
,
S. K.
,
2018
, “
Monofacial vs Bifacial Si-based PV Modules: Which One Is More Cost-Effective?
Sol. Energy
,
176
(
August
), pp.
412
438
.
6.
Stein
,
J. S.
,
Reise
,
C.
,
Castro
,
J. B.
,
Friesen
,
G.
,
Maugeri
,
G.
,
Urrejola
,
E.
,
Ranta
,
S.
, et al
,
2021
, “Bifacial PV Modules & Systems Experience and Results From International Research and Pilot Applications,” IEA-PVPS T13-14:2021, ISBN 978-3-907281-03-1, https://iea-pvps.org/wp-content/uploads/2021/04/IEA-PVPS-T13-14_2021-Bifacial-Photovoltaic-Modules-and-Systems-report.pdf, Accessed November 25, 2022.
7.
Rodríguez-Gallegos
,
C. D.
,
Liu
,
H.
,
Gandhi
,
O.
,
Singh
,
J. P.
,
Krishnamurthy
,
V.
,
Kumar
,
A.
,
Stein
,
J. S.
, et al
,
2020
, “
Global Techno-economic Performance of Bifacial and Tracking Photovoltaic Systems
,”
Joule
,
4
(
7
), pp.
1514
1541
.
8.
Liang
,
T. S.
,
Pravettoni
,
M.
,
Deline
,
C.
,
Stein
,
J. S.
,
Kopecek
,
R.
,
Singh
,
J. P.
,
Luo
,
W.
, et al
,
2019
, “
A Review of Crystalline Silicon Bifacial Photovoltaic Performance Characterisation and Simulation
,”
Energy Environ. Sci.
,
12
(
1
), pp.
116
148
.
9.
Gu
,
W.
,
Ma
,
T.
,
Ahmed
,
S.
,
Zhang
,
Y.
, and
Peng
,
J.
,
2020
, “
A Comprehensive Review and Outlook of Bifacial Photovoltaic (BPV) Technology
,”
Energy Convers. Manage.
,
223
, p.
113283
.
10.
Schmidt
,
M.
,
Hinneburg
,
M.
, and
Lutz
,
B. G.
,
2021
, “
Bi-facial Open-Space Photovoltaic Systems Versus Conventional Systems Using Mono-facial Modules
,”
TH Wildau Eng. Natural Sci. Proc.
,
1
, pp.
37
42
.
11.
Tillmann
,
P.
,
Jäger
,
K.
, and
Becker
,
C.
,
2019
, “
Minimising the Levelised Cost of Electricity for Bifacial Solar Panel Arrays Using Bayesian Optimisation
,”
Sustain. Energy Fuels
,
4
(
1
), pp.
254
264
.
12.
Pelaez
,
S. A.
,
Deline
,
C.
,
Macalpine
,
S.
,
Marion
,
B.
,
Stein
,
J. S.
, and
Kostuk
,
R. K.
,
2019
, “
Comparison of Bifacial Solar Irradiance Model Predictions With Field Validation
,”
IEEE J. Photovoltaics
,
9
(
1
), pp.
82
88
.
13.
Fajuke
,
I. D.
, and
Raji
,
A. K.
,
2022
, “
Firefly Algorithm-Based Optimization of the Additional Energy Yield of Bifacial PV Modules
,”
Energies
,
15
(
7
), p.
2651
.
14.
Parcevaux
,
S. D.
, and
Itier
,
B.
,
1975
, “Rapport III.1. Albedo et Agriculture, Influence des Activités de L'homme sur le Cycle Hydrométéorologique,” Compte rendu des treizièmes journées de l'hydraulique, Paris, Tome 1, https://www.persee.fr/doc/jhydr_0000-0001_1975_act_13_1_4416, Accessed April 10, 2023.
15.
Muthu
,
V.
, and
Ramadas
,
G.
,
2023
, “
A Comprehensive 4E Study on the Performance of Bifacial Solar Module Installed on Different Ground Surface Colors: An Experimental Study on a Specific Site
,”
ASME J. Sol. Energy Eng.
,
145
(
1
), p.
011012
.
16.
Stein
,
J. S.
,
Riley
,
D.
,
Lave
,
M.
,
Hansen
,
C.
,
Deline
,
C.
, and
Toor
,
F.
,
2017
, “
Outdoor Field Performance From Bifacial Photovoltaic Modules and Systems
,”
IEEE 44th Photovoltaic Specialist Conference (PVSC)
,
Washington, DC
, pp.
3184
3189
.
17.
Janssen
,
G. J. M.
,
Van Aken
,
B. B.
,
Carr
,
A. J.
, and
Mewe
,
A. A.
,
2015
, “
Outdoor Performance of Bifacial Modules by Measurements and Modelling
,”
Energy Proc.
,
77
, pp.
364
373
.
18.
Shoukry
,
I.
,
Libal
,
J.
,
Kopecek
,
R.
,
Wefringhaus
,
E.
, and
Werner
,
J.
,
2016
, “
Modelling of Bifacial Gain for Stand-Alone and In-Field Installed Bifacial PV Modules
,”
Energy Proc.
,
92
, pp.
600
608
.
19.
Wei
,
Q.
,
Wu
,
C.
,
Liu
,
X.
,
Zhang
,
S.
,
Qian
,
F.
,
Lu
,
J.
,
Lian
,
W.
, and
Ni
,
P.
,
2016
, “
The Glass-Glass Module Using n-Type Bifacial Solar Cell With PERT Structure and Its Performance
,”
Energy Proc.
,
92
(
512
), pp.
750
754
.
20.
Sun
,
X.
,
Khan
,
M. R.
,
Deline
,
C.
, and
Alam
,
M. A.
,
2018
, “
Optimization and Performance of Bifacial Solar Modules: A Global Perspective
,”
Appl. Energy
,
212
, pp.
1601
1610
.
21.
Asgharzadeh
,
A.
,
Marion
,
B.
,
Deline
,
C.
,
Hansen
,
C.
, and
Stein
,
J. S.
,
2018
, “
A Sensitivity Study of the Impact of Installation Parameters and System Configuration on the Performance of Bifacial PV Arrays
,”
IEEE J. Photovoltaics
,
8
(
3
), pp.
798
805
.
22.
Abotaleb
,
A.
, and
Abdallah
,
A.
,
2018
, “
Performance of Bifacial-Silicon Heterojunction Modules Under Desert Environment
,”
Renew. Energy
,
127
, pp.
94
101
.
23.
Bouchakour
,
S.
,
Valencia-caballero
,
D.
,
Luna
,
A.
,
Roman
,
E.
,
Boudjelthia
,
E. A. K.
, and
Rodríguez
,
P.
,
2021
, “
Modelling and Simulation of Bifacial PV Production Using Monofacial Electrical Models
,”
Energies
,
14
(
14
), p.
4224
.
24.
Singh
,
J. P.
,
Aberle
,
A. G.
, and
Walsh
,
T. M.
,
2014
, “
Electrical Characterization Method for Bifacial Photovoltaic Modules
,”
Sol. Energy Mater. Sol. Cells
,
127
, pp.
136
142
.
25.
Gu
,
W.
,
Ma
,
T.
,
Li
,
M.
,
Shen
,
L.
, and
Zhang
,
Y.
,
2020
, “
A Coupled Optical-Electrical-Thermal Model of the Bifacial Photovoltaic Module
,”
Appl. Energy
,
258
, p.
15
.
26.
Ayala Pelaez
,
S.
, and
Deline
,
C.
,
2020
, “
Bifacial_Radiance: A Python Package for Modeling Bifacial Solar Photovoltaic Systems
,”
J. Open Source Software
,
5
(
50
), p.
1865
.
27.
National Renewable Energy Laboratory
,
2023
, “System Advisor Model—SAM Version 2023.12.17 (SAM 2023.12.17),”
National Renewable Energy Laboratory
,
Golden CO
, https://sam.nrel.gov/, Accessed June 23, 2024.
28.
Marion
,
B.
,
MacAlpine
,
S.
,
Deline
,
C.
,
Asgharzadeh
,
A.
,
Toor
,
F.
,
Riley
,
D.
,
Stein
,
J.
, and
Hansen
,
C.
,
2017
, “
A Practical Irradiance Model for Bifacial PV Modules
,”
2017 IEEE 44th Photovoltaic Specialists Conference (PVSC)
,
Washington, DC
,
June
, pp.
1537
1542
.
29.
PVsyst
,
2023
, “PVsyst—Logiciel Photovoltaïque,” https://www.pvsyst.com/fr/, Accessed January 6, 2023.
30.
Riedel-lyngskær
,
N.
,
Berrian
,
D.
,
Mira
,
D. A.
,
Protti
,
A. A.
,
Poulsen
,
P. B.
,
Libal
,
J.
, and
Vedde
,
J.
,
2020
, “
Validation of Bifacial Photovoltaic Simulation Software Against Monitoring Data From Large-Scale Single-Axis Trackers and Fixed Tilt Systems in Denmark
,”
Appl. Sci.
,
10
(
23
), pp.
1
29
.
31.
Robaa
,
S. M.
,
2009
, “
Validation of the Existing Models for Estimating Global Solar Radiation Over Egypt
,”
Energy Convers. Manage.
,
50
(
1
), pp.
184
193
.
32.
Appelbaum
,
J.
,
2018
, “
The Role of View Factors in Solar Photovoltaic Fields
,”
Renew. Sustain. Energy Rev.
,
81
(
Part 1
), pp.
161
171
.
33.
Appelbaum
,
J.
,
2016
, “
View Factors to Grounds of Photovoltaic Collectors
,”
ASME J. Sol. Energy Eng.
,
138
(
6
), p.
064501
.
34.
Massalha
,
Y.
, and
Appelbaum
,
J.
,
2020
, “
Experimental Verification of the Sky View Factor Model in Multiple-Row Photovoltaic Fields
,”
ASME J. Sol. Energy Eng.
,
142
(
2
), p.
021004
.
35.
Fathi
,
N. Y.
, and
Samer
,
A.
,
2016
, “
View Factors of Flat Solar Collectors Array in Flat, Inclined, and Step-Like Solar Fields
,”
ASME J. Sol. Energy Eng.
,
138
(
6
), p.
061005
.
36.
Yusufoglu
,
U. A.
,
Lee
,
T. H.
,
Pletzer
,
T. M.
,
Halm
,
A.
,
Koduvelikulathu
,
L. J.
,
Comparotto
,
C.
,
Kopecek
,
R.
, and
Kurz
,
H.
,
2014
, “
Simulation of Energy Production by Bifacial Modules With Revision of Ground Reflection
,”
Energy Proc.
,
55
, pp.
389
395
.
37.
Jie
,
J.
,
Hua
,
Y.
,
Gang
,
P.
,
Bin
,
J.
, and
Wei
,
H.
,
2007
, “
Study of PV-Trombe Wall Assisted With DC Fan
,”
Build. Environ.
,
42
(
10
), pp.
3529
3539
.
38.
Duffie
,
J. A.
,
Beckman
,
W. A.
, and
McGowan
,
J.
,
1985
, “
Solar Engineering of Thermal Processes
,”
Am. J. Phys.
,
53
(
4
), pp.
382
382
.
39.
Bany
,
J.
, and
Appelbaum
,
J.
,
1987
, “
The Effect of Shading on the Design of a Field of Solar Collectors
,”
Sol. Cells
,
20
(
3
), pp.
201
228
.
40.
Benbba
,
R.
,
Mastouri
,
H.
,
Radoine
,
H.
,
Drobinski
,
P.
,
Badosa
,
J.
, and
Outzourhit
,
A.
,
2024
, “A Comparison of Different Rear Irradiation Modeling Methods in a Bifacial PV System,”
Sustainability in Energy and Buildings 2023, Smart Innovation, Systems and Technologies
, Vol.
378
,
Springer
,
Singapore
, pp.
405
415
.
41.
Chai
,
T.
, and
Draxler
,
R. R.
,
2014
, “
Root Mean Square Error (RMSE) or Mean Absolute Error (MAE)?—Arguments Against Avoiding RMSE in the Literature
,”
Geosci. Model Dev.
,
7
(
3
), pp.
1247
1250
.
42.
Benkaciali
,
S.
, and
Gairaa
,
K.
,
2014
, “
Modélisation de L’irradiation Solaire Globale Incidente Sur Un Plan Incliné
,”
J. Ren. Energies
,
17
(
2
), pp.
245
252
.
43.
Li
,
D. H. W.
, and
Aghimien
,
E. I.
,
2023
, “
Predicting Vertical Daylight Illuminance Data From Measured Solar Irradiance: A Machine Learning-Based Luminous Efficacy Approach
,”
ASME J. Sol. Energy Eng.
,
145
(
3
), p.
031005
.
44.
Belghiti
,
H.
,
Kandoussi
,
K.
,
Harrison
,
A.
,
Benbba
,
R.
,
El Otmani
,
R.
,
Chellakhi
,
A.
, and
Sadek
,
E. S.
,
2024
, “
Efficient and Robust Control of a Standalone PV-Storage System: An Integrated Single Sensor-Based Nonlinear Controller With TSCC-Battery Management
,”
J. Energy Storage
,
95
, p.
112630
.
45.
Riley
,
D.
,
Hansen
,
C.
,
Stein
,
J.
,
Lave
,
M.
,
Kallickal
,
J.
,
Marion
,
B.
, and
Toor
,
F.
,
2018
, “
A Performance Model for Bifacial PV Modules
,”
2017 IEEE 44th Photovoltaic Specialist Conference (PVSC)
,
Washington, DC
,
June 25–30
, pp.
3348
3353
.
46.
Eckstein
,
J. H.
,
1990
, “
Detailed Modelling of Phtovoltaic System Components
,”
Doctoral dissertation
,
University of Wisconsin-Madison
,
Madison, WI
, Online, https://minds.wisconsin.edu/bitstream/handle/1793/45596/Eckstein1990.pdf, Accessed June 23, 2024.
47.
pvpmc.sandia.gov
,
2023
, “PV Performance Modeling Collaborative | Bifacial PV Project,” https://pvpmc.sandia.gov/pv-research/bifacial-pv-project/, Accessed April 10, 2023.
48.
“API—Bifacialvf 0.1.6 Documentation,” https://bifacialvf.readthedocs.io/en/latest/api.html, Accessed June 25, 2024.
49.
“Bifacial_radiance,” https://bifacial-radiance.readthedocs.io/en/latest/manualapi.html, Accessed June 24, 2024.
50.
Stein
,
J. S.
,
Hansen
,
C.
,
Marion
,
B.
, et al
,
2017
, “Comparison of Modeling Methods and Tools for Bifacial PV Performance,” 3-Yr Bifacial Research Project (2016–2018) Collaborative Project Between Sandia, NREL and University of Iowa, https://pvpmc.sandia.gov/app/uploads/sites/243/2022/10/13_Joshua-S-Stein_Comparison-of-modeling-methods-and-tools-for-bifacial-PV-performance.pdf, Accessed Decemeber 13, 2023.
You do not currently have access to this content.