Abstract

Recently, direct absorption solar collector (DASC) system has emerged a new class of solar collectors with much improved solar thermal conversion potential over conventional surface-based absorption solar collectors. Further, introducing noble metallic particles like Ag, Au, Al, TiN, or Cu (at nano ranges) in the working fluids enhanced the optical properties of the working fluid and hence the overall thermal performance of such DASC systems. However, these novel thermal systems are prone to high emissive and radiative losses at high-temperature ranges. Additionally, the nanoparticles used in the working fluid are expensive, toxic after use, complex to synthesize, and mostly non-biodegradable. In the present study, a medium-flux asymmetric compound parabolic concentrator (ACPC) based concentrating DASC system has been tested over clear sky days in the months of September and October, 2022 at the composite climate of Jalandhar (latitude 31.25 deg N, longitude 75.44 deg E), India. A hybrid heat transfer fluid is prepared using Azadirachta Indica leaves’ extract and blended with gold plasmonic nanoparticles (Au nanoparticles of mean sizes ∼ 40 nm, mass fraction ∼ 4 ppm) to improve the overall thermal performance of the concentrating DASC system. Stored energy fraction of hybrid heat transfer fluid at a depth of 2 cm reached about 74.9%, which is about 67% higher than base fluid water. The outdoor experiments showed that hybrid heat transfer fluid had about 10.4 °C higher temperature gains in concentrating DASC system, and the photo-thermal efficiency was enhanced up to 40% as compared to base fluid water. The study demonstrates the advantage of an eco-friendly, low cost, and highly stable hybrid heat transfer fluid as a potential candidate for a medium-flux DASC system.

References

1.
Bamisile
,
O.
,
Huang
,
Q.
,
Dagbasi
,
M.
,
Abid
,
M.
,
Okafor
,
E. C.
, and
Ratlamwala
,
T. A.
,
2020
, “
Concentrated Solar Powered Novel Multi-Generation System: A Energy, Exergy, and Environmental Analysis
,”
ASME J. Sol. Energy Eng.
,
142
(
5
), p.
051005
.
2.
Wole-osho
,
I.
,
Okonkwo
,
E. C.
,
Abbasoglu
,
S.
, and
Kavaz
,
D.
,
2020
, “
Nanofluids in Solar Thermal Collectors: Review and Limitations
,”
Int. J. Thermophys.
,
41
(
11
), pp.
1
74
.
3.
Bellos
,
E.
, and
Tzivanidis
,
C.
,
2019
, “
A Review of Concentrating Solar Thermal Collectors With and Without Nanofluids
,”
J. Therm. Anal. Calorim.
,
135
(
1
), pp.
763
786
.
4.
Khullar
,
V.
,
Tyagi
,
H.
,
Phelan
,
P. E.
,
Otanicar
,
T. P.
,
Singh
,
H.
, and
Taylor
,
R. A.
,
2012
, “
Solar Energy Harvesting Using Nanofluids-Based Concentrating Solar Collector
,”
ASME J. Nanotechnol. Eng. Med.
,
3
(
3
), p.
031003
.
5.
Sainz-Mañas
,
M.
,
Bataille
,
F.
,
Caliot
,
C.
,
Vossier
,
A.
, and
Flamant
,
G.
,
2022
, “
Direct Absorption Nanofluid-Based Solar Collectors for Low and Medium Temperatures. A Review
,”
Energy
,
260
, p.
124916
.
6.
Sreekumar
,
S.
,
Joseph
,
A.
,
Sujith Kumar
,
C. S.
, and
Thomas
,
S.
,
2020
, “
Investigation on Influence of Antimony Tin Oxide/Silver Nanofluid on Direct Absorption Parabolic Solar Collector
,”
J. Clean. Prod.
,
249
, p.
119378
.
7.
Mallah
,
A. R.
,
Zubir
,
M. N. M.
,
Alawi
,
O. A.
,
Kazi
,
S. N.
,
Ahmed
,
W.
,
Sadri
,
R.
, and
Kasaeian
,
A.
,
2022
, “
Experimental Study on the Effects of Multi-Resonance Plasmonic Nanoparticles for Improving the Solar Collector Efficiency
,”
Renew. Energy
,
187
, pp.
1204
1223
.
8.
Khullar
,
V.
,
Bhalla
,
V.
, and
Tyagi
,
H.
,
2018
, “
Potential Heat Transfer Fluids (Nanofluids) for Direct Volumetric Absorption-Based Solar Thermal Systems
,”
ASME J. Therm. Sci. Eng. Appl.
,
10
(
1
), p.
011009
.
9.
Valizade
,
M.
,
Heyhat
,
M. M.
, and
Maerefat
,
M.
,
2020
, “
Experimental Study of the Thermal Behavior of Direct Absorption Parabolic Trough Collector by Applying Copper Metal Foam as Volumetric Solar Absorption
,”
Renew. Energy
,
145
, pp.
261
269
.
10.
Kumar
,
S.
,
Sharma
,
V.
,
Samantaray
,
M. R.
, and
Chander
,
N.
,
2020
, “
Experimental Investigation of a Direct Absorption Solar Collector Using Ultra Stable Gold Plasmonic Nanofluid Under Real Outdoor Conditions
,”
Renew. Energy
,
162
, pp.
1958
1969
.
11.
Taylor
,
R. A.
,
Phelan
,
P. E.
,
Otanicar
,
T. P.
,
Walker
,
C. A.
,
Nguyen
,
M.
,
Trimble
,
S.
, and
Prasher
,
R.
,
2011
, “
Applicability of Nanofluids in High Flux Solar Collectors
,”
J. Renew. Sustain. Energy
,
3
(
2
), p.
023104
.
12.
Ham
,
J.
,
Shin
,
Y.
, and
Cho
,
H.
,
2022
, “
Comparison of Thermal Performance Between a Surface and a Volumetric Absorption Solar Collector Using Water and Fe3O4 Nanofluid
,”
Energy
,
239
, p.
122282
.
13.
Gorji
,
T. B.
, and
Ranjbar
,
A. A.
,
2017
, “
A Review on Optical Properties and Application of Nanofluids in Direct Absorption Solar Collectors (DASCs)
,”
Renew. Sustain. Energy Rev.
,
72
, pp.
10
32
.
14.
Qin
,
C.
,
Kim
,
J. B.
,
Gonome
,
H.
, and
Lee
,
B. J.
,
2020
, “
Absorption Characteristics of Nanoparticles With Sharp Edges for a Direct-Absorption Solar Collector
,”
Renew. Energy
,
145
, pp.
21
28
.
15.
Kaluri
,
R.
,
Vijayaraghavan
,
S.
, and
Ganapathisubbu
,
S.
,
2015
, “
Model Development and Performance Studies of a Concentrating Direct Absorption Solar Collector
,”
ASME J. Sol. Energy Eng.
,
137
(
2
), p.
021005
.
16.
Freedman
,
J. P.
,
Wang
,
H.
, and
Prasher
,
R. S.
,
2018
, “
Analysis of Nanofluid-Based Parabolic Trough Collectors for Solar Thermal Applications
,”
ASME J. Sol. Energy Eng.
,
140
(
5
), p.
051008
.
17.
Singh
,
P.
,
Kumar
,
S.
,
Chander
,
N.
, and
Bagha
,
A. K.
,
2023
, “
Experimental Investigation of an Asymmetric Compound Parabolic Concentrator–Based Direct Absorption Solar Collector Using Plasmonic Nanofluids
,”
Environ. Sci. Pollut. Res.
,
30
(
21
), pp.
60383
60398
.
18.
Okonkwo
,
E. C.
,
Abid
,
M.
,
Ratlamwala
,
T. A. H.
,
Abbasoglu
,
S.
, and
Dagbasi
,
M.
,
2019
, “
Optimal Analysis of Entropy Generation and Heat Transfer in Parabolic Trough Collector Using Green-Synthesized TiO2/Water Nanofluids
,”
ASME J. Sol. Energy Eng.
,
141
(
3
), p.
031011
.
19.
Zhang
,
H.
,
Chen
,
H. J.
,
Du
,
X.
, and
Wen
,
D.
,
2014
, “
Photothermal Conversion Characteristics of Gold Nanoparticle Dispersions
,”
Sol. Energy
,
100
, pp.
141
147
.
20.
Bandarra Filho
,
E. P.
,
Mendoza
,
O. S. H.
,
Beicker
,
C. L. L.
,
Menezes
,
A.
, and
Wen
,
D.
,
2014
, “
Experimental Investigation of a Silver Nanoparticle-Based Direct Absorption Solar Thermal System
,”
Energy Convers. Manag.
,
84
, pp.
261
267
.
21.
Wang
,
L.
,
Zhu
,
G.
,
Wang
,
M.
,
Yu
,
W.
,
Zeng
,
J.
,
Yu
,
X.
,
Xie
,
H.
, and
Li
,
Q.
,
2019
, “
Dual Plasmonic Au/TiN Nanofluids for Efficient Solar Photothermal Conversion
,”
Sol. Energy
,
184
, pp.
240
248
.
22.
Wang
,
Q.
,
Yang
,
L.
,
Zhao
,
N.
,
Xu
,
G.
,
Song
,
J.
,
Jin
,
X.
,
Li
,
X.
, and
Liu
,
S.
,
2023
, “
A Review of Applications of Plasmonic and Conventional Nanofluids in Solar Heat Collection
,”
Appl. Therm. Eng.
,
219
, p.
119476
.
23.
Zhang
,
C.
,
Zhang
,
Y.
, and
Xie
,
W.
,
2021
, “
Plasmonic Metal/Semiconductor Hybrid Nanomaterials for Solar to Chemical Energy Conversion
,”
J. Energy Chem.
,
63
, pp.
40
53
.
24.
Lee
,
B. J.
,
Park
,
K.
,
Walsh
,
T.
, and
Xu
,
L.
,
2012
, “
Radiative Heat Transfer Analysis in Plasmonic Nanofluids for Direct Solar Thermal Absorption
,”
ASME. J. Sol. Energy Eng.
,
134
(
2
), p.
021009
.
25.
Lee
,
R.
,
Kim
,
J. B.
,
Qin
,
C.
,
Lee
,
H.
,
Lee
,
B. J.
, and
Jung
,
G. Y.
,
2020
, “
Synthesis of Therminol-Based Plasmonic Nanofluids With Core/Shell Nanoparticles and Characterization of Their Absorption/Scattering Coefficients
,”
Sol. Energy Mater. Sol. Cells
,
209
, p.
110442
.
26.
Duan
,
H.
,
Zheng
,
Y.
,
Xu
,
C.
,
Shang
,
Y.
, and
Ding
,
F.
,
2019
, “
Experimental Investigation on the Plasmonic Blended Nanofluid for Efficient Solar Absorption
,”
Appl. Therm. Eng.
,
161
, p.
114192
.
27.
Kumar
,
S.
,
Chander
,
N.
,
Gupta
,
V. K.
, and
Kukreja
,
R.
,
2021
, “
Progress, Challenges and Future Prospects of Plasmonic Nanofluid Based Direct Absorption Solar Collectors—A State-of-the-Art Review
,”
Sol. Energy
,
227
, pp.
365
425
.
28.
Wang
,
X.
,
He
,
Y.
,
Liu
,
X.
,
Shi
,
L.
, and
Zhu
,
J.
,
2017
, “
Investigation of Photothermal Heating Enabled by Plasmonic Nanofluids for Direct Solar Steam Generation
,”
Sol. Energy
,
157
, pp.
35
46
.
29.
Xiong
,
Q.
,
Altnji
,
S.
,
Tayebi
,
T.
,
Izadi
,
M.
,
Hajjar
,
A.
,
Sundén
,
B.
, and
Li
,
L. K. B.
,
2021
, “
A Comprehensive Review on the Application of Hybrid Nanofluids in Solar Energy Collectors
,”
Sustain. Energy Technol. Assess.
,
47
, p.
101341
.
30.
Babar
,
H.
, and
Ali
,
H. M.
,
2019
, “
Towards Hybrid Nanofluids: Preparation, Thermophysical Properties, Applications, and Challenges
,”
J. Mol. Liq.
,
281
, pp.
598
633
.
31.
Joseph
,
A.
,
Sreekumar
,
S.
, and
Thomas
,
S.
,
2020
, “
Energy and Exergy Analysis of SiO2/Ag-CuO Plasmonic Nanofluid on Direct Absorption Parabolic Solar Collector
,”
Renew. Energy
,
162
, pp.
1655
1664
.
32.
Mehrali
,
M.
,
Ghatkesar
,
M. K.
, and
Pecnik
,
R.
,
2018
, “
Full-Spectrum Volumetric Solar Thermal Conversion Via Graphene/Silver Hybrid Plasmonic Nanofluids
,”
Appl. Energy
,
224
, pp.
103
115
.
33.
Chen
,
M.
,
He
,
Y.
,
Huang
,
J.
, and
Zhu
,
J.
,
2016
, “
Synthesis and Solar Photo-Thermal Conversion of Au, Ag, and Au-Ag Blended Plasmonic Nanoparticles
,”
Energy Convers. Manag.
,
127
, pp.
293
300
.
34.
Farooq
,
S.
,
Vital
,
C. V. P.
,
Gómez-Malagón
,
L. A.
,
de Araujo
,
R. E.
, and
Rativa
,
D.
,
2020
, “
Thermo-Optical Performance of Iron-Doped Gold Nanoshells-Based Nanofluid on Direct Absorption Solar Collectors
,”
Sol. Energy
,
208
, pp.
1181
1188
.
35.
Wen
,
J.
,
Li
,
X.
,
Zhang
,
H.
,
Chen
,
M.
, and
Wu
,
X.
,
2022
, “
Enhancement of Solar Absorption Performance Using TiN@SiCw Plasmonic Nanofluids for Effective Photo-Thermal Conversion: Numerical and Experimental Investigation
,”
Renew. Energy
,
193
, pp.
1062
1073
.
36.
Balakin
,
B. V.
, and
Struchalin
,
P. G.
,
2023
, “
Eco-Friendly and Low-Cost Nanofluid for Direct Absorption Solar Collectors
,”
Mater. Lett.
,
330
, p.
133323
.
37.
Wang
,
H.
,
Yang
,
W.
,
Cheng
,
L.
,
Guan
,
C.
, and
Yan
,
H.
,
2018
, “
Chinese Ink: High Performance Nanofluids for Solar Energy
,”
Sol. Energy Mater. Sol. Cells
,
176
, pp.
374
380
.
38.
Alberghini
,
M.
,
Morciano
,
M.
,
Bergamasco
,
L.
,
Fasano
,
M.
,
Lavagna
,
L.
,
Humbert
,
G.
,
Sani
,
E.
,
Pavese
,
M.
,
Chiavazzo
,
E.
, and
Asinari
,
P.
,
2019
, “
Coffee-Based Colloids for Direct Solar Absorption
,”
Sci. Rep.
,
9
(
1
), p.
4701
.
39.
Richhariya
,
G.
,
Kumar
,
A.
,
Tekasakul
,
P.
, and
Gupta
,
B.
,
2017
, “
Natural Dyes for Dye Sensitized Solar Cell: A Review
,”
Renew. Sustain. Energy Rev.
,
69
, pp.
705
718
.
40.
Gupta
,
V. K.
,
Kumar
,
S.
, and
Kukreja
,
R.
,
2022
, “
Experimental Investigation of a Volumetric Solar Collector Using Natural Extract of Azadirachta Indica Based Heat Transfer Fluids
,”
Sustain. Energy Technol. Assess.
,
52
, p.
102325
.
41.
Qin
,
C.
,
Kim
,
J. B.
, and
Lee
,
B. J.
,
2019
, “
Performance Analysis of a Direct-Absorption Parabolic-Trough Solar Collector Using Plasmonic Nanofluids
,”
Renew. Energy
,
143
, pp.
24
33
.
42.
Bortolato
,
M.
,
Dugaria
,
S.
,
Agresti
,
F.
,
Barison
,
S.
,
Fedele
,
L.
,
Sani
,
E.
, and
Del Col
,
D.
,
2017
, “
Investigation of a Single Wall Carbon Nanohorn-Based Nanofluid in a Full-Scale Direct Absorption Parabolic Trough Solar Collector
,”
Energy Convers. Manag.
,
150
, pp.
693
703
.
43.
McFarland
,
A. D.
,
Haynes
,
C. L.
,
Mirkin
,
C. A.
,
Van Duyne
,
R. P.
, and
Godwin
,
H. A.
,
2004
, “
Color My Nanoworld
,”
J. Chem. Educ.
,
81
(
4
), p.
544A
.
44.
Dong
,
J.
,
Carpinone
,
P. L.
,
Pyrgiotakis
,
G.
,
Demokritou
,
P.
, and
Moudgil
,
B. M.
,
2020
, “
Synthesis of Precision Gold Nanoparticles Using Turkevich Method
,”
KONA Powder Part. J.
,
37
, pp.
224
232
.
45.
Chander
,
N.
,
Khan
,
A. F.
,
Thouti
,
E.
,
Sardana
,
S. K.
,
Chandrasekhar
,
P. S.
,
Dutta
,
V.
, and
Komarala
,
V. K.
,
2014
, “
Size and Concentration Effects of Gold Nanoparticles on Optical and Electrical Properties of Plasmonic Dye Sensitized Solar Cells
,”
Sol. Energy
,
109
, pp.
11
23
.
46.
Xu
,
R.
, and
Tang
,
R.
,
2021
, “
Geometric Characteristics and Optical Performance of ACPCs for Integration With Roofing Structure of Buildings
,”
Energy Rep.
,
7
, pp.
2043
2056
.
47.
Thepa
,
S.
,
Kongkiattikajorn
,
J.
, and
Songprakorp
,
R.
,
2012
, “Effect of Solar Concentrator System on Disinfection of Soil-Borne Pathogens and TomatoSeedling Growth,”
Solar Power
,
InTech
,
China
, pp.
344
366
.
48.
Xuan
,
Q.
,
Li
,
G.
,
Pei
,
G.
,
Ji
,
J.
,
Su
,
Y.
, and
Zhao
,
B.
,
2017
, “
Optimization Design and Performance Analysis of a Novel Asymmetric Compound Parabolic Concentrator With Rotation Angle for Building Application
,”
Sol. Energy
,
158
, pp.
808
818
.
49.
Bellos
,
E.
,
Korres
,
D.
,
Tzivanidis
,
C.
, and
Antonopoulos
,
K. A.
,
2016
, “
Design, Simulation and Optimization of a Compound Parabolic Collector
,”
Sustain. Energy Technol. Assess.
,
16
, pp.
53
63
.
50.
Rabl
,
A.
,
1976
, “
Optical and Thermal Properties of Compound Parabolic Concentrators
,”
Sol. Energy
,
18
(
6
), pp.
497
511
.
51.
Tyagi
,
H.
,
Phelan
,
P.
, and
Prasher
,
R.
,
2009
, “
Predicted Efficiency of a Low-Temperature Nanofluid-Based Direct Absorption Solar Collector
,”
ASME. J. Sol. Energy Eng.
,
131
(
4
), p.
041004
.
52.
Duan
,
H.
,
2020
, “
Analysis on the Extinction Properties of Nanofluids for Direct Solar Absorption
,”
Phys. E Low-Dimen. Syst. Nanostruct.
,
120
, p.
114046
.
53.
Abernethy
,
R. B.
,
Benedict
,
R. P.
, and
Dowdell
,
R. B.
,
1985
, “
ASME Measurement Uncertainty
,”
ASME J. Fluids. Eng.
,
107
(
2
), pp.
161
164
.
54.
Zhang
,
L.
,
Liu
,
J.
,
He
,
G.
,
Ye
,
Z.
,
Fang
,
X.
, and
Zhang
,
Z.
,
2014
, “
Radiative Properties of Ionic Liquid-Based Nanofluids for Medium-to-High-Temperature Direct Absorption Solar Collectors
,”
Sol. Energy Mater. Sol. Cells
,
130
, pp.
521
528
.
55.
Hazra
,
S. K.
,
Michael
,
M.
, and
Nandi
,
T. K.
,
2021
, “
Investigations on Optical and Photo-Thermal Conversion Characteristics of BN-EG and BN/CB-EG Hybrid Nanofluids for Applications in Direct Absorption Solar Collectors
,”
Sol. Energy Mater. Sol. Cells
,
230
, p.
111245
.
56.
Duan
,
H.
,
Chen
,
R.
,
Zheng
,
Y.
, and
Xu
,
C.
,
2018
, “
Photothermal Properties of Plasmonic Nanoshell-Blended Nanofluid for Direct Solar Thermal Absorption
,”
Opt. Expr.
,
26
(
23
), pp.
29956
29967
.
57.
Gupta
,
V. K.
,
Kumar
,
S.
,
Kukreja
,
R.
, and
Chander
,
N.
,
2023
, “
Experimental Thermal Performance Investigation of a Direct Absorption Solar Collector Using Hybrid Nanofluid of Gold Nanoparticles With Natural Extract of Azadirachta Indica Leaves
,”
Renew. Energy
,
202
, pp.
1021
1031
.
58.
ASHRAE Standard 83–96 Methods of Testing to Determine the Thermal Performance of Solar Collectors. Atlanta, GA, 1986.
59.
Yu
,
X.
, and
Xuan
,
Y.
,
2018
, “
Investigation on Thermo-Optical Properties of CuO/Ag Plasmonic Nanofluids
,”
Sol. Energy
,
160
, pp.
200
207
.
60.
Sharaf
,
O. Z.
,
Rizk
,
N.
,
Munro
,
C. J.
,
Joshi
,
C. P.
,
Anjum
,
D. H.
,
Abu-Nada
,
E.
,
Martin
,
M. N.
, and
Alazzam
,
A.
,
2021
, “
Radiation Stability and Photothermal Performance of Surface-Functionalized Plasmonic Nanofluids for Direct-Absorption Solar Applications
,”
Sol. Energy Mater. Sol. Cells
,
227
, p.
111115
.
You do not currently have access to this content.