Abstract

The current strong global consensus on reducing carbon emissions is a motivation to develop more efficient means of harnessing sustainable sources of energy. Accordingly, research efforts toward the development of more efficient wind turbine designs are desirable. With this motivation, we present a set of numerical studies on flows past vertical axis wind turbines (VAWTs). We perform large eddy simulations (LES) of flows past several VAWT configurations. A uniform inflow is set for our simulations. The influence of turbine blades on the flow field is modeled using the actuator line method (ALM). Our focus is on a twin rotor configuration, wherein the rotors are placed close enough, so that the separation between the centers of the two rotors is less than the diameter of the two individual turbines (the overlapping configuration). We demonstrate that such a configuration indeed results in (a) the enhanced power coefficient (ratio of power extracted by the turbine configuration to the power available in the freestream) and (b) better power density (power extracted by a turbine configuration per unit ground area occupied by the VAWT) compared to a single rotor VAWT configuration. Based on our findings, we conclude that the overlapping twin rotor arrangement can prove to be the preferred configuration for large-scale VAWT-based wind farms.

References

1.
GWE Council
,
2021
, “
Global Wind Report 2021
,” Global Wind Energy Council [Online], https://gwec.net/global-wind-report-2021/, Accessed February 27, 2022.
2.
Hezaveh
,
S. H.
,
Bou-Zeid
,
E.
,
Lohry
,
M. W.
, and
Martinelli
,
L.
,
2017
, “
Simulation and Wake Analysis of a Single Vertical Axis Wind Turbine
,”
Wind Energy
,
20
(
4
), pp.
713
730
.
3.
Bhutta
,
A.
,
Hayat
,
M. M.
,
Farooq
,
A. U.
,
Ali
,
Z.
,
Jamil
,
S. R.
, and
Hussain
,
Z.
,
2012
, “
Vertical Axis Wind Turbine—A Review of Various Configurations and Design Techniques
,”
Renew. Sustain. Energy Rev.
,
16
(
4
), pp.
1926
1939
.
4.
Dabiri
,
J. O.
,
2011
, “
Potential Order-of-Magnitude Enhancement of Wind Farm Power Density Via Counter-Rotating Vertical-Axis Wind Turbine Arrays
,”
J. Renew. Sustain. Energy
,
3
(
4
), p.
043104
.
5.
Tian
,
W.
,
Mao
,
Z.
,
An
,
X.
,
Zhang
,
B.
, and
Wen
,
H.
,
2017
, “
Numerical Study of Energy Recovery From the Wakes of Moving Vehicles on Highways by Using a Vertical Axis Wind Turbine
,”
Energy
,
141
(
C
), pp.
715
728
.
6.
Kumar
,
V.
,
Paraschivoiu
,
M.
, and
Paraschivoiu
,
I.
,
2010
, “
Low Reynolds Number Vertical Axis Wind Turbine for Mars
,”
Wind Eng.
,
34
(
4
), pp.
461
476
.
7.
Hand
,
B.
, and
Cashman
,
A.
,
2020
, “
A Review on the Historical Development of the Lift-Type Vertical Axis Wind Turbine: From Onshore to Offshore Floating Application
,”
Sustain. Energy Technol. Assess.
,
38
, p.
100646
.
8.
Templin
,
R. J.
,
1974
, “
Aerodynamic Performance Theory for the NRC Vertical-Axis Wind Turbine
,” Tech. Rep., National Aeronautical Establishment, Ottawa, Ontario, Report Number(s): N-76-16618; LTR-LA-160, OSTI Identifier: 7235638.
9.
Strickland
,
J. H.
,
1975
, “
Darrieus Turbine: A Performance Prediction Model Using Multiple Streamtubes
,” Tech. Rep.,
Sandia Labs
.,
Albuquerque, NM
, Report Number(s): SAND-75-0431, OSTI Identifier: 5004816.
10.
Paraschivoiu
,
L.
,
1982
, “
Aerodynamic Loads and Performance of the Darrieus Rotor
,”
J. Energy
,
6
(
6
), pp.
406
412
.
11.
Strickland
,
J. H.
,
Webster
,
B. T.
, and
Nguyen
,
T.
,
1979
, “
A Vortex Model of the Darrieus Turbine: An Analytical and Experimental Study
,”
ASME J. Fluids Eng.
,
101
(
4
), pp.
500
505
.
12.
Masse
,
B.
,
1986
, “
A Local-Circulation Model for Darrieus Vertical-Axis Wind Turbines
,”
J. Propul. Power.
,
2
(
2
), pp.
135
141
.
13.
Ganesh Rajagopalan
,
R.
,
1986
, “
Viscous Flow Field Analysis of a Vertical Axis Wind Turbine
,”
Intersociety Energy Conversion Engineering Conference 21
,
San Diego, CA
,
Aug. 25
, pp.
1242
1246
.
14.
Cooper
,
P.
,
2010
,
Development and Analysis of Vertical-Axis Wind Turbines
,
WIT Press
,
Southampton
, pp.
277
302
.
15.
Abkar
,
M.
,
2018
, “
Theoretical Modeling of Vertical-Axis Wind Turbine Wakes
,”
Energies
,
12
(
1
), p.
10
.
16.
Song
,
C.
,
Zheng
,
Y.
,
Zhao
,
Z.
,
Zhang
,
Y.
,
Li
,
C.
, and
Jiang
,
H.
,
2015
, “
Investigation of Meshing Strategies and Turbulence Models of Computational Fluid Dynamics Simulations of Vertical Axis Wind Turbines
,”
J. Renew. Sustain. Energy
,
7
(
3
), p.
033111
.
17.
Bachant
,
P.
,
Wosnik
,
M.
,
Gunawan
,
B.
, and
Neary
,
V. S.
,
2016
, “
Experimental Study of a Reference Model Vertical-Axis Cross-Flow Turbine
,”
PLoS One
,
11
(
9
), p.
e0163799
.
18.
Danao
,
L. A.
,
Eboibi
,
O.
, and
Howell
,
R.
,
2013
, “
An Experimental Investigation Into the Influence of Unsteady Wind on the Performance of a Vertical Axis Wind Turbine
,”
Appl. Energy
,
107
, pp.
403
411
.
19.
Kinzel
,
M.
,
Araya
,
D. B.
, and
Dabiri
,
J. O.
,
2015
, “
Turbulence in Vertical Axis Wind Turbine Canopies
,”
Phys. Fluids
,
27
(
11
), p.
115102
.
20.
Hezaveh
,
S. H.
,
Bou-Zeid
,
E.
,
Dabiri
,
J.
,
Kinzel
,
M.
,
Cortina
,
G.
, and
Martinelli
,
L.
,
2018
, “
Increasing the Power Production of Vertical-Axis Wind-Turbine Farms Using Synergistic Clustering
,”
Boundary-Layer Meteorol.
,
169
(
2
), pp.
275
296
.
21.
Delafin
,
P.-L.
,
Nishino
,
T.
,
Kolios
,
A.
, and
Wang
,
L.
,
2017
, “
Comparison of Low-Order Aerodynamic Models and Rans CFD for Full Scale 3D Vertical Axis Wind Turbines
,”
Renew. Energy
,
109
(
C
), pp.
564
575
.
22.
Bachant
,
P.
,
Goude
,
A.
, and
Wosnik
,
M.
,
2016
, “
Actuator Line Modeling of Vertical-Axis Wind Turbines
,” preprint arXiv:1605.01449.
23.
Zuo
,
W.
,
Wang
,
X.
, and
Kang
,
S.
,
2016
, “
Numerical Simulations on the Wake Effect of H-Type Vertical Axis Wind Turbines
,”
Energy
,
106
(
C
), pp.
691
700
.
24.
Sorensen
,
J. N.
, and
Shen
,
W. Z.
,
2002
, “
Numerical Modeling of Wind Turbine Wakes
,”
ASME J. Fluids Eng.
,
124
(
2
), pp.
393
399
.
25.
Vergaerde
,
A.
,
De Troyer
,
T.
,
Muggiasca
,
S.
,
Bayati
,
I.
,
Belloli
,
M.
,
Kluczewska-Bordier
,
J.
,
Parneix
,
N.
,
Silvert
,
F.
, and
Runacres
,
M. C.
,
2020
, “
Experimental Characterisation of the Wake Behind Paired Vertical-Axis Wind Turbines
,”
J. Wind Eng. Ind. Aerodyn.
,
206
, p.
104353
.
26.
Veeravalli
,
S. V.
,
Srinivasan
,
B.
,
Singh
,
S. N.
, and
Alam
,
S.
,
2018
, “
Twin/Multiple Rotor Vertical Axis Wind Turbine
,” Indian Patent No. 201611020927.
27.
Smagorinsky
,
J.
,
1963
, “
General Circulation Experiments With the Primitive Equations: I. The Basic Experiment
,”
Mon. Weather Rev.
,
91
(
3
), pp.
99
164
.
28.
Sheldahl
,
R. E.
, and
Klimas
,
P. C.
,
1981
, “
Aerodynamic Characteristics of Seven Symmetrical Airfoil Sections Through 180-Degree Angle of Attack for Use in Aerodynamic Analysis of Vertical Axis Wind Turbines
,” Tech. Rep.,
Sandia National Labs
.,
Albuquerque, NM
, 3, Report Number(s): SAND-80-2114, OSTI Identifier: 6548367.
You do not currently have access to this content.