Abstract

The present study proposes a Quonset-type greenhouse integrated with a thin-film photovoltaic thermal (GiPVT) system combined with an earth-air heat exchanger (EAHE) for crop cultivation in harsh hot climate conditions. A periodic thermal model in terms of input climatic and design parameters has been developed to evaluate the GiPVT system’s thermal performance. This model is based on the energy balance equations of the GiPVT system, and it calculates PV roof temperature, greenhouse air temperature, and plant temperature for a given climatic data, i.e., solar irradiation and ambient air temperature. Furthermore, the thermal load leveling for the GiPVT system is determined to assess the thermal comfort status within the enclosed space of the system. The results indicate that EAHE successfully reduces greenhouse air temperature and increases the thermal comfort level inside the GiPVT system. Corresponding to the optimum flowrate of 0.5 kg/s, the maximum temperature of the plants and greenhouse is reduced by 20 °C and 21 °C, respectively. Moreover, the present GiPVT system produces 29.22 kWh of electrical energy per day, making the system self-sustainable.

References

1.
Colglazier
,
W.
,
2015
, “
Sustainable Development Agenda: 2030
,”
Science
,
349
(
6252
), pp.
1048
1050
.
2.
Foley
,
J. A.
,
Ramankutty
,
N.
,
Brauman
,
K. A.
,
Cassidy
,
E. S.
,
Gerber
,
J. S.
,
Johnston
,
M.
, and
Zaks
,
D. P.
,
2011
, “
Solutions for a Cultivated Planet
,”
Nature
,
478
(
7369
), pp.
337
342
.
3.
Hasan
,
M. K.
,
Desiere
,
S.
,
D’Haese
,
M.
, and
Kumar
,
L.
,
2018
, “
Impact of Climate-Smart Agriculture Adoption on the Food Security of Coastal Farmers in Bangladesh
,”
Food Secur.
,
10
(
4
), pp.
1073
1088
.
4.
Velasco-Muñoz
,
J. F.
,
Aznar-Sánchez
,
J. A.
,
Belmonte-Ureña
,
L. J.
, and
Román-Sánchez
,
I. M.
,
2018
, “
Sustainable Water Use in Agriculture: A Review of Worldwide Research
,”
Sustainability
,
10
(
4
), p.
1084
.
5.
Badji
,
A.
,
Benseddik
,
A.
,
Bensaha
,
H.
,
Boukhelifa
,
A.
, and
Hasrane
,
I.
,
2022
, “
Design, Technology, and Management of Greenhouse: A Review
,”
J. Cleaner Prod.
,
373
(
1
), p.
133753
.
6.
Ozgener
,
O.
, and
Ozgener
,
L.
,
2013
, “
Three Cooling Seasons Monitoring of Exergetic Performance Analysis of an EAHE Assisted Solar Greenhouse Building
,”
ASME J. Sol. Energy Eng.
,
135
(
2
), p.
021007
.
7.
Mahach
,
H.
, and
Benhamou
,
B.
,
2021
, “
Extensive Parametric Study of Cooling Performance of an Earth-to-Air Heat Exchanger in Hot Semi-arid Climate
,”
ASME J. Therm. Sci. Eng. Appl.
,
13
(
3
), p.
031006
.
8.
Gupta
,
N.
,
Tiwari
,
A.
, and
Tiwari
,
G. N.
,
2017
, “
A Thermal Model of Hybrid Cooling Systems for Building Integrated Semitransparent Photovoltaic Thermal System
,”
Sol. Energy
,
153
(
1
), pp.
486
498
.
9.
Singh
,
R. D.
, and
Tiwari
,
G. N.
,
2010
, “
Energy Conservation in the Greenhouse System: A Steady State Analysis
,”
Energy
,
35
(
6
), pp.
2367
2373
.
10.
Ozgener
,
O.
, and
Ozgener
,
L.
,
2011
, “
Determining the Optimal Design of a Closed Loop Earth to Air Heat Exchanger for Greenhouse Heating by Using Exergoeconomics
,”
Energy Build.
,
43
(
4
), pp.
960
965
.
11.
Li
,
Z. X.
,
Shahsavar
,
A.
,
Al-Rashed
,
A. A.
,
Kalbasi
,
R.
,
Afrand
,
M.
, and
Talebizadehsardari
,
P.
,
2019
, “
Multi-Objective Energy and Exergy Optimization of Different Configurations of Hybrid Earth-Air Heat Exchanger and Building Integrated Photovoltaic/Thermal System
,”
Energy Convers. Manage.
,
195
(
1
), pp.
1098
1110
.
12.
Hachchadi
,
O.
,
Bououd
,
M.
, and
Mechaqrane
,
A.
,
2021
, “
Performance Analysis of Photovoltaic-Thermal Air Collectors Combined With a Water to Air Heat Exchanger for Renewed Air Conditioning in Building
,”
Environ. Sci. Pollut. Res.
,
28
(
15
), pp.
18953
18962
.
13.
Liu
,
J.
,
Jin
,
T. H.
, and
Shin
,
K. Y.
,
2021
, “
Parametric Study on a Simplified Model for the Estimation of the Heating and the Cooling Loads of a Closed-Span Greenhouse: A Case Study in Korea
,”
J. Mech. Sci. Technol.
,
35
(
1
), pp.
333
341
.
14.
Jakhar
,
S.
,
Soni
,
M. S.
, and
Boehm
,
R. F.
,
2018
, “
Thermal Modeling of a Rooftop Photovoltaic/Thermal System With Earth Air Heat Exchanger for Combined Power and Space Heating
,”
ASME J. Sol. Energy Eng.
,
140
(
3
), p.
031011
.
15.
Gholampour
,
M.
, and
Ameri
,
M.
,
2015
, “
Design Considerations of Photovoltaic/Thermal Air Systems: Energetic and Exergetic Approaches
,”
ASME J. Sol. Energy Eng.
,
137
(
3
), p.
031005
.
16.
Mahach
,
H.
,
Lafqir
,
F.
,
Benhamou
,
B.
,
Bennouna
,
A.
,
Schmidt
,
C.
,
Groß
,
B.
, and
Altgeld
,
H.
,
2023
, “
Impact of an Earth-Air Heat Exchanger Combined With Nighttime Ventilation on Indoor Thermal Comfort of a Residential Building in Hot Semi-arid Climate
,”
ASME J. Sol. Energy Eng.
,
145
(
1
), p.
011002
.
17.
Shahsavar
,
A.
,
Bagherzadeh
,
S. A.
, and
Afrand
,
M.
,
2021
, “
Application of Artificial Intelligence Techniques in Prediction of Energetic Performance of a Hybrid System Consisting of an Earth-Air Heat Exchanger and a Building-Integrated Photovoltaic/Thermal System
,”
ASME J. Sol. Energy Eng.
,
143
(
5
), p.
051002
.
18.
Tavares
,
C.
,
Goncalves
,
A.
,
Castro
,
P.
,
Loureiro
,
D.
, and
Joyce
,
A.
,
2001
, “
Modelling an Agriculture Production Greenhouse
,”
Renewable Energy
,
22
(
1–3
), pp.
15
20
.
19.
Liu
,
B. Y.
, and
Jordan
,
R. C.
,
1960
, “
The Interrelationship and Characteristic Distribution of Direct, Diffuse and Total Solar Radiation
,”
Sol. Energy
,
4
(
3
), pp.
1
19
.
20.
Tiwari
,
G. N.
,
2003
,
Greenhouse Technology for Controlled Environment
,
Alpha Science International Ltd
,
Oxford, UK
.
21.
Ghosal
,
M. K.
, and
Tiwari
,
G. N.
,
2006
, “
Modeling and Parametric Studies for Thermal Performance of an Earth to Air Heat Exchanger Integrated With a Greenhouse
,”
Energy Convers. Manage.
,
47
(
13–14
), pp.
1779
1798
.
22.
Tiwari
,
G. N.
,
Akhtar
,
M. A.
,
Shukla
,
A.
, and
Khan
,
M. E.
,
2006
, “
Annual Thermal Performance of Greenhouse With an Earth–Air Heat Exchanger: An Experimental Validation
,”
Renewable Energy
,
31
(
15
), pp.
2432
2446
.
23.
Evans
,
D. L.
,
1981
, “
Simplified Method for Predicting Photovoltaic Array Output
,”
Sol. Energy
,
27
(
6
), pp.
555
560
.
24.
Deo
,
A.
,
Mishra
,
G. K.
, and
Tiwari
,
G. N.
,
2017
, “
A Thermal Periodic Theory and Experimental Validation of Building Integrated Semi-transparent Photovoltaic Thermal (BiSPVT) System
,”
Sol. Energy
,
155
(
1
), pp.
1021
1032
.
You do not currently have access to this content.