Abstract

In this study, experimental works were carried out in three different drying methods named heat exchanger-evacuated tube-assisted drying system (HE-ETADS), greenhouse solar dryer (GHSD), and open sun drying (OSD) to compare thin-layer drying kinetics, concept of mass transfer, and quality assessment of banana slices. Initial moisture content (MC) of banana slices was obtained as 78 ± 2.0% (wb), which decreased to 23.2 ± 2.0% (wb), 25.6 ± 2.0% (wb), and 28.8 ± 2.0% (wb) in all three drying systems, respectively, in 9 h of drying time. Average drying rate was evaluated as 7.89, 7.65, and 7.25 g water/g solid h in HE-ETADS, GHSD, and OSD, respectively. Weibull model (WM) defines thin-layer drying kinetics of banana slices in all three drying processes. Maximum hardness and shrinkage factor of dried banana slices were obtained as 373.6 g and 75%, respectively, in HE-ETADS. Effective moisture diffusivity, activation energy, and mass transfer coefficient were computed as 1.11–2.48 × 10−07 m2 s−1, 30.25 kJ/mole, and 3.21–1.0 × 10−04 m/s, in HE-ETADS. Similarly, in GHSD and OSD, these factors were observed as 1.21–2.34 × 10−07 m2 s−1, 41.25 kJ/mole, 3.15–1.0 × 10−04 m/s and 1.3–2.21 × 10−07 m2 s−1, 56.89 kJ/mole, 3.01–1.0 × 10−04 m/s. Maximum total color changes were noted in OSD. Hence, HE-ETADS can potentially dry high moisture content crops effectively within a minimum drying period.

References

1.
Omolola
,
A. O.
,
Jideani
,
A. I. O.
, and
Kapila
,
P. F.
,
2015
, “
Drying Kinetics of Banana (Musa Spp.)
,”
Interciencia
,
40
(
6
), pp.
374
380
.
2.
Omolola
,
A. O.
,
Jideani
,
A. I. O.
, and
Kapila
,
P. F.
,
2015
, “
Modeling of Thin Layer Drying Characteristics of Banana Cv.Luvhele
,”
Bulg. J. Agric. Sci.
,
21
(
2
), pp.
342
348
.
3.
Bala
,
B. K.
, and
Janjai
,
S.
,
2013
, “
Solar Drying of Agricultural Products
,”
Stewart Postharvest Rev.
,
9
(
2)
, pp.
1
8
.
4.
Sharma
,
A.
,
Chen
,
C. R.
, and
Lan
,
N. V.
,
2009
, “
Solar-Energy Drying Systems: A Review
,”
Renew. Sustain. Energy Rev.
,
13
(
6–7
), pp.
1185
1210
.
5.
Prakash
,
O.
, and
Kumar
,
A.
,
2020
,
Solar Drying Systems
, 1st ed.,
CRC Press, Taylor & Francis
,
Boca Raton, FL
.
6.
Nidhi
,
P. V.
,
2015
, “
Drying Characteristics of Vermicelli in a Slant Height Greenhouse Dryer
,”
Proceedings of the National Conference on Advances in Engineering, Technology & Management (AETM’15)
,
M. M. University, Sadopur, Ambala, Haryana
,
March 5
[
IOSR J. Mech. Civil Eng.
,
1
6
]. https://www.iosrjournals.org/iosr-jmce/papers/AETM'15_ME/5/13-ME-153.pdf
7.
Puello-Mendez
,
J.
,
Meza-Castellar
,
P.
,
Cortés
,
L.
,
Bossa
,
L.
,
Sanjuan
,
E.
,
Lambis-Miranda
,
H.
, and
Villamizar
,
L.
,
2017
, “
Comparative Study of Solar Drying of Cocoa Beans: Two Methods Used in Colombian Rural Areas
,”
Chem. Eng. Trans.
,
57
, pp.
1711
1716
.
8.
Saxena
,
G.
, and
Gaur
,
M. K.
,
2020
, “
Performance Evaluation and Drying Kinetics for Solar Drying of Hygroscopic Crops in Vacuum Tube Assisted Hybrid Dryer
,”
ASME J. Sol. Energy Eng.
,
142
(
5
), p.
051009
.
9.
Yadav
,
S.
, and
Chandramohan
,
V. P.
,
2018
, “
Numerical Analysis on Thermal Energy Storage Device With Finned Copper Tube for an Indirect Type Solar Drying System
,”
ASME J. Sol. Energy Eng.
,
140
(
3
), p.
031009
.
10.
Nukulwar
,
M. R.
, and
Tungikar
,
V. B.
,
2020
, “
Thin-Layer Mathematical Modeling of Turmeric in Indirect Natural Conventional Solar Dryer
,”
ASME J. Sol. Energy Eng.
,
142
(
4
), p.
041001
.
11.
Kiburi
,
F. G.
,
Kanali
,
C. L.
,
Kituu
,
G. M.
,
Ajwang
,
P. O.
, and
Ronoh
,
E. K.
,
2020
, “
Performance Evaluation and Economic Feasibility of a Solar-Biomass Hybrid Greenhouse Dryer for Drying Banana Slices
,”
Renew. Energy Focus
,
34
, pp.
60
68
.
12.
Amer
,
B. M. A.
,
Hossain
,
M. A.
, and
Gottschalk
,
K.
,
2010
, “
Design and Performance Evaluation of a New Hybrid Solar Dryer for Banana
,”
Energy Convers. Manage.
,
51
(
4
), pp.
813
820
.
13.
Lingayat
,
A.
,
Chandramohan
,
V. P.
, and
Raju
,
V. R. K.
,
2017
, “
Design, Development and Performance of Indirect Type Solar Dryer for Banana Drying
,”
Energy Procedia
,
109
, pp.
409
416
.
14.
Jahromi
,
M. S. B.
,
Kalantar
,
V.
,
Akhijahani
,
H. S.
, and
Kargarsharifabad
,
H.
,
2022
, “
Recent Progress on Solar Cabinet Dryers for Agricultural Products Equipped With Energy Storage Using Phase Change Materials
,”
J. Energy Storage
,
51
, p.
104434
.
15.
Pruengam
,
P.
,
Pathaveerat
,
S.
, and
Pukdeewong
,
P.
,
2021
, “
Fabrication and Testing of Double-Sided Solar Collector Dryer for Drying Banana
,”
Case Stud. Therm. Eng.
,
27
, p.
101335
.
16.
Lingayat
,
A.
, and
Chandramohan
,
V. P.
,
2021
, “
Numerical Investigation on Solar Air Collector and Its Practical Application in the Indirect Solar Dryer for Banana Chips Drying With Energy and Exergy Analysis
,”
Therm. Sci. Eng. Prog.
,
26
, p.
101077
.
17.
Mewa
,
E. A.
,
Okoth
,
M. W.
,
Kunyanga
,
C. N.
, and
Rugiri
,
M. N.
,
2019
, “
Experimental Evaluation of Beef Drying Kinetics in a Solar Tunnel Dryer
,”
Renew. Energy
,
139
, pp.
235
241
.
18.
Sallam
,
Y. I.
,
Aly
,
M. H.
,
Nassar
,
A. F.
, and
Mohamed
,
E. A.
,
2015
, “
Solar Drying of Whole Mint Plant Under Natural and Forced Convection
,”
J. Adv. Res.
,
6
(
2
), pp.
171
178
.
19.
Karathanos
,
V. T.
, and
Belessiotis
,
V. G.
,
1999
, “
Application of a Thin-Layer Equation to Drying Data of Fresh and Semi-Dried Fruits
,”
J. Agric. Eng. Res.
,
74
(
4
), pp.
355
361
.
20.
Akpinar
,
E. K.
,
2010
, “
Drying of Mint Leaves in a Solar Dryer and Under Open Sun: Modelling, Performance Analyses
,”
Energy Convers. Manage.
,
51
(
12
), pp.
2407
2418
.
21.
Chinenye
,
N. M. M.
,
Ogunlowo
,
A. S.
, and
Olukunle
,
O. J.
,
2010
, “
Cocoa Bean (Theobroma cacao L.) Drying Kinetics
,”
Chil. J. Agric. Res.
,
70
(
4
), pp.
633
639
.
22.
Kushwah
,
A.
,
Kumar
,
A.
,
Kumar
,
M.
, and
Pal
,
A.
,
2021
, “
Garlic Dehydration Inside Heat Exchanger-Evacuated Tube Assisted Drying System : Thermal Performance, Drying Kinetic and Color Index
,”
J. Stored Prod. Res.
,
93
, p.
101852
.
23.
Hassanien
,
R. H. E.
,
Li
,
M.
, and
Tang
,
Y.
,
2018
, “
The Evacuated Tube Solar Collector Assisted Heat Pump for Heating Greenhouses
,”
Energy Build.
,
169
, pp.
305
318
.
24.
Kushwah
,
A.
,
Kumar
,
A.
, and
Gaur
,
M. K.
,
2022
, “
Drying Kinetics, Performance, and Quality Assessment for Banana Slices Using Heat Pump-Assisted Drying System (HPADS)
,”
J. Food Process Eng.
,
45
(
3
), pp.
1
10
.
25.
Daghigh
,
R.
,
Shahidian
,
R.
, and
Oramipoor
,
H.
,
2020
, “
A Multistate Investigation of a Solar Dryer Coupled With Photovoltaic Thermal Collector and Evacuated Tube Collector
,”
Sol. Energy
,
199
, pp.
694
703
.
26.
Chauhan
,
P. S.
,
Kumar
,
A.
, and
Nuntadusit
,
C.
,
2018
, “
Thermo-Environomical and Drying Kinetics of Bitter Gourd Flakes Drying Under North Wall Insulated Greenhouse Dryer
,”
Sol. Energy
,
162
, pp.
205
216
.
27.
Prakash
,
O.
, and
Kumar
,
A.
,
2014
, “
Performance Evaluation of Greenhouse Dryer With Opaque North Wall
,”
Heat Mass Transfer
,
50
(
4
), pp.
493
500
.
28.
Kushwah
,
A.
,
Kumar
,
A.
,
Pal
,
A.
, and
Kumar
,
M.
,
2021
, “
Materials Today : Proceedings Experimental Analysis and Thermal Performance of Evacuated Tube Solar Collector Assisted Solar Dryer
,”
Mater. Today Proc.
,
47
(
17
), pp.
5846
5851
.
29.
Westwater
,
J. W.
, and
Drickamer
,
H. G.
,
1957
, “
The Mathematics of Diffusion
,”
J. Am. Chem. Soc.
,
79
(
5
), pp.
1267
1268
.
30.
Dissa
,
A. O.
,
Desmorieux
,
H.
,
Bathiebo
,
J.
, and
Koulidiati
,
J.
,
2011
, “
A Comparative Study of Direct and Indirect Solar Drying of Mango
,”
Glob. J. Pure Appl. Sci.
,
17
(
3
), pp.
273
294
.
31.
Falade
,
K. O.
, and
Ogunwolu
,
O. S.
,
2014
, “
Modeling of Drying Patterns of Fresh and Osmotically Pretreated Cooking Banana and Plantain Slices
,”
J. Food Process. Preserv.
,
38
(
1
), pp.
373
388
. doi.org/10.1111/j.1745-4549.2012.00785.x
32.
Malakar
,
S.
,
Alam
,
M.
, and
Arora
,
V. K.
,
2022
, “
Evacuated Tube Solar and Sun Drying of Beetroot Slices: Comparative Assessment of Thermal Performance, Drying Kinetics, and Quality Analysis
,”
Sol. Energy
,
233
, pp.
246
258
.
33.
Poonia
,
S.
,
Singh
,
A. K.
,
Santra
,
P.
, and
Mishra
,
D.
,
2018
, “Design, Development and Performance Evolution of a Low-Cost Solar Dryer,”
Concentrated Solar Thermal Energy Technologies
,
L.
Chandra
, and
A.
Dixit
, eds.,
Springer Proceeding in Energy
,
Singapore
, pp.
219
223
.
34.
Khanlari
,
A.
,
Güler
,
H. Ö.
,
Tuncer
,
A. D.
,
Şirin
,
C.
,
Bilge
,
Y. C.
,
Yılmaz
,
Y.
, and
Güngör
,
A.
,
2020
, “
Experimental and Numerical Study of the Effect of Integrating Plus-Shaped Perforated Baffles to Solar Air Collector in Drying Application
,”
Renew. Energy
,
145
, pp.
1677
1692
.
35.
Kant
,
R.
,
Kushwah
,
A.
,
Kumar
,
A.
, and
Kumar
,
M.
,
2023
, “
Solar Drying of Peppermint Leave: Thermal Characteristics, Drying Kinetics, and Quality Assessment
,”
J. Stored Prod. Res.
,
100
, p.
102068
.
36.
Gokhale
,
S. V.
, and
Lele
,
S. S.
,
2011
, “
Dehydration of Red Beet Root (Beta vulgaris) by Hot Air Drying: Process Optimization and Mathematical Modeling
,”
Food Sci. Biotechnol.
,
20
(
4
), pp.
955
964
.
37.
Malakar
,
S.
,
Arora
,
V. K.
, and
Nema
,
P. K.
,
2021
, “
Design and Performance Evaluation of an Evacuated Tube Solar Dryer for Drying Garlic Clove
,”
Renew. Energy
,
168
, pp.
568
580
.
38.
Guiné
,
R. P. F.
,
Pinho
,
S.
, and
Barroca
,
M. J.
,
2011
, “
Study of the Convective Drying of Pumpkin (Cucurbita maxima)
,”
Food Bioprod. Process.
,
89
(
4
), pp.
422
428
.
39.
Dianda
,
B.
,
Ousmane
,
M.
,
Kam
,
S.
, and
Ky
,
T.
,
2015
, “
Experimental Study of the Kinetics and Shrinkage of Tomato Slices in Convective Drying
,”
African J. Food Sci.
,
9
(
5
), pp.
262
271
.
40.
Badaoui
,
O.
,
Hanini
,
S.
,
Djebli
,
A.
,
Haddad
,
B.
, and
Benhamou
,
A.
,
2019
, “
Experimental and Modelling Study of Tomato Pomace Waste Drying in a New Solar Greenhouse: Evaluation of New Drying Models
,”
Renew. Energy
,
133
, pp.
144
155
.
41.
Mohammadi
,
I.
,
Tabatabaekoloor
,
R.
, and
Motevali
,
A.
,
2019
, “
Effect of Air Recirculation and Heat Pump on Mass Transfer and Energy Parameters in Drying of Kiwifruit Slices
,”
Energy
,
170
, pp.
149
158
.
42.
Ilicali
,
C.
, and
Icier
,
F.
,
2016
, “
Modified Dincer and Dost Method for Predicting the Mass Transfer Coefficients in Solids
,”
Int. J. Food Eng.
,
12
(
1
), pp.
101
105
.
You do not currently have access to this content.