Abstract

Heliostat tracking is a critical component of the solar field of concentrating solar power tower (SPT) systems and can be the source of significant losses in power and profit when it lacks the necessary accuracy. This paper presents an advanced heliostat drive system for the SPT generation plant. An integrated model for the heliostat drive system based on dual axes tracking is proposed using an inexpensive angle sensor. The mathematical model of the integrated drive system is developed, including the solar, tower, and heliostat models. The matlab simulation model for the proposed integrated drive system is developed and evaluated. An experimental prototype for a dual-axis heliostat is built using Class-E direct current choppers and an inexpensive Gyro angle sensor. The prototype is tested and considered in the Dhahran region in Saudi Arabia under different operating conditions. A comparative study between simulation and experimental results is conducted to assess the efficacy and accuracy of the proposed controller drive system and validate the developed integrated model. Both simulation and experimental results demonstrate the effectiveness of the proposed dual-axis trackers to follow the sunbeams throughout the year.

References

1.
Swart
,
B. D.
,
2017
, “
A Method for Accurate Measurement of Heliostat Mirror Orientation
,”
Master’s thesis
,
Stellenbosch University
,
South Africa
.
2.
Hamanah
,
W. M.
,
Salem
,
A.
, and
Abido
,
M. A.
,
2020
, “
Heliostat Dual-Axis Sun Tracking System: A Case Study in KSA
,”
Proceedings of 18th International Conference on Renewable Energies and Power Quality
,
Granada, Spain
,
Apr. 1–2
,
Vol. 18, pp. 488–493
. https://www.icrepq.com/icrepq20/406-20-hamanah.pdf
3.
Hamanah
,
W. M.
,
Salem
,
A.
,
Abido
,
M. A.
,
Habetler
,
T. G.
, and
Qwbaiba
,
A. M.
,
2021
, “
Solar Power Tower Drives: A Comprehensive Survey
,”
IEEE Access
, pp.
1
1
.
4.
Mehos
,
M.
,
Price
,
H.
,
Cable
,
R.
,
Kearney
,
D.
,
Kelly
,
B.
,
Kolb
,
G.
, and
Morse
,
F.
,
2020
, “Concentrating Solar Power Best Practices Study,” Golden, CO: National Renewable Energy Laboratory. NREL/TP-5500-75763.
5.
Sattler
,
J. C.
,
Roger
,
M.
,
Schwarzbozl
,
P.
,
Buck
,
R.
,
Macke
,
A.
,
Reader
,
C.
, and
Gottsche
,
J.
,
2020
, “
Review of Heliostat Calibration and Tracking Control Methods
,”
Sol. Energy
,
207
, pp.
110
132
.
6.
Camacho
,
E. F.
,
Berenguel
,
M.
, and
Gallego
,
A. J.
,
2014
, “
Control of Thermal Solar Energy Plants
,”
J. Process Control
,
24
(
2
), pp.
332
340
.
7.
Nageb
,
M. M.
,
El-Samahy
,
A. A.
,
Rady
,
M. A.
,
Amin
,
A. M. A.
,
Abd El-Hamid
,
R. H.
, and
Olasolo
,
D.
,
2016
, “
An Integrated Design Approach of Local Control System of a Linear Drive Single Facet Heliostat
,”
Proceedings of the ASME 2016 Power Conference Collocated With the ASME 2016 10th International Conference on Energy Sustainability and the ASME 2016 14th International Conference on Fuel Cell Science, Engineering and Technology. ASME 2016 Power Conference
,
Charlotte, NC
,
June 26–30
,
ASME
, p.
V001T08A011
.
8.
Chang
,
C.
,
2016
,
Advances in Solar Heating and Cooling
,
Woodhead Publishing Series in Energy
,
Sawston, UK
, pp.
81
93
.
9.
Younkin
,
G. W.
,
McGlasson
,
W. D.
, and
Lorenz
,
R. D.
,
1990
, “
Considerations for Low Inertia AC Drives in Machine Tool Axis Servo Applications
,”
Conference Record of the 1990 IEEE Industry Applications Society Annual Meeting
,
Seattle, WA
,
Oct. 7–12
, Vol. 2, pp. 1551–1556.
10.
Ebrahimi
,
M.
, and
Whalley
,
R.
,
2000
, “
Analysis, Modeling and Simulation of Stiffness in Machinetool Drives
,”
Comput. Ind. Eng.
,
38
(
1
), pp.
93
105
.
11.
Ziegler
,
J. G.
, and
Nichols
,
N. B.
,
1942
, “
Optimum Settings for Automatic Controllers
,”
Trans. ASME
,
64
(
2B
), pp.
759
768
.
12.
Gamil
,
A.
,
Gilani
,
S. I.
, and
Al-kayiem
,
H. H.
,
2014
, “
Simulation of Incident Solar Power Input to Fixed Target of Central Receiver System in Malaysia
,”
Proceedings of IEEE Conference on Sustainable Utilization and Development in Engineering and Technology (CSUDET)
,
Selangor, Malaysia
,
May 30–June 1, 2013
, pp.
92
97
.
13.
Hayat
,
H. M. A.
,
Hussain
,
S.
,
Ali
,
H. M.
,
Anwar
,
N.
, and
Iqbal
,
M. N.
,
2020
, “
Case Studies on the Effect of Two-Dimensional Heliostat Tracking on the Performance of Domestic Scale Solar Thermal Tower
,”
Case Stud. Therm. Eng.
,
21
), p.
100681
.
14.
Pfahl
,
A.
,
2014
, “
Survey of Heliostat Concepts for Cost Reduction
,”
ASME. J. Sol. Energy Eng.
,
136
(
1
), p.
014501
.
15.
Pfahl
,
A.
,
Randt
,
M.
,
Holze
,
C.
, and
Unterschütz
,
S.
,
2013
, “
Autonomous Light-Weight Heliostat With Rim Drives
,”
Sol. Energy
,
92
(
1
), pp.
230
240
.
16.
Kolb
,
G. J.
,
Jones
,
S. A.
,
Donnelly
,
M. W.
,
Gorman
,
D.
,
Thomas
,
R.
,
Davenport
,
R.
, and
Lumia
,
R.
,
2007
, “
Heliostat Cost Reduction Study
,” Sandia National Laboratories, Albuquerque—New Mexico, and Livermore—California, Technical Report No. SAND2007-3293.
17.
Taylor
,
M.
,
Ralon
,
P.
,
Anuta
,
H.
, and
Al-Zoghoul
,
S.
,
IRENA
,
2020
, “
Renewable Power Generation Costs in 2019
,” International Renewable Energy Agency, Abu Dhabi.
18.
Coventry
,
J.
, and
Pye
,
J.
,
2014
, “
Heliostat Cost Reduction—Where to now ?
Energy Procedia
,
49
(
1
), pp.
60
70
.
19.
Pfahl
,
A.
,
Coventry
,
J.
,
Röger
,
M.
,
Wolfertstetter
,
F.
,
Vásquez-Arango
,
J. F.
,
Gross
,
F.
,
Arjomandi
,
M.
,
Schwarzbözl
,
P.
,
Geiger
,
M.
, and
Liedke
,
P.
,
2017
, “
Progress in Heliostat Development
,”
Sol. Energy
,
152
, pp.
3
37
.
20.
Donker
,
P.
,
Rosinga
,
G.
, and
Marchie
,
E.
,
2016
, “
Reducing Heliostat Field Costs by Direct Measurement and Control of the Mirror Orientation
,”
AIP Conference Proceedings
,
Cape Town, South Africa
,
Oct. 13–16, 2015
,
AIP Publishing
, Vol.
1734
. No.
1
, p.
020025
.
21.
Nudehi
,
S. S.
,
Duncan
,
G. S.
, and
Venstrom
,
L. J.
,
2019
, “
Heliostat Attitude Control Strategy in the Solar Energy Research Facility of Valparaiso University
,”
ASME. J. Sol. Energy Eng.
,
141
(
5
), p.
051005
.
22.
Aktas
,
A.
, and
Kabak
,
M. A.
,
2019
, “
Hybrid Hesitant Fuzzy Decision-Making Approach for Evaluating Solar Power Plant Location Sites
,”
Arabian J. Sci. Eng.
,
44
(
8
), pp.
7235
7247
.
23.
Kumar
,
A.
,
Rizwan
,
M.
, and
Nangia
,
U.
,
2019
, “
A Hybrid Intelligent Approach for Solar Photovoltaic Power Forecasting: Impact of Aerosol Data
,”
Arabian J. Sci. Eng.
,
45
(
October 2019
), pp.
1715
1732
.
24.
Grigoriev
,
V.
,
Milidonis
,
K.
,
Constantinou
,
M.
,
Corsi
,
C.
,
Pye
,
J.
, and
Blanco
,
M.
,
2021
, “
Optimal Sizing of Cylindrical Receivers for Surround Heliostat Fields Using Fluxtracer
,”
ASME J. Sol. Energy Eng.
,
143
(
6
), p.
061007
.
25.
Clifford
,
M. J.
, and
Eastwood
,
D.
,
2004
, “
Design of a Novel Passive Solar Tracker
,”
Sol. Energy
,
77
(
3
), pp.
269
280
.
26.
Lee
,
C. Y.
,
Chou
,
P. C.
,
Chiang
,
C. M.
, and
Lin
,
C. F.
,
2009
, “
Sun Tracking Systems: A Review
,”
Sensors
,
9
(
5
), pp.
3875
3890
.
27.
Chen
,
Y. T.
,
Chong
,
K. K.
,
Bligh
,
T. P.
,
Chen
,
L. C.
,
Yunus
,
J.
,
Kannan
,
K. S.
,
Lim
,
B. H.
, et al
,
2001
, “
Non-Imaging, Focusing Heliostat
,”
Sol. Energy
,
71
(
3
), pp.
155
163
.
28.
Chaib
,
A.
,
Kesraoui
,
M.
, and
Kechadi
,
E.
,
2013
, “
Heliostat Orientation System Using a PLC-Based Robot Manipulator
,”
Proceedings of the 2013 Eighth International Conference and Exhibition on Ecological Vehicles and Renewable Energies (EVER)
,
Monte Carlo, Monaco
,
Mar. 27–30
,
IEEE Publisher
, pp.
1
6
.
29.
Xuemei
,
Z.
,
Xiaoling
,
M.
,
Kaizhi
,
L.
, and
Wenjun
,
H.
,
2014
, “
Precise Sun-Tracking Control of Heliostats Based on a Sun’s Image Reference System
,”
Proceedings of the 26th Chinese Control and Decision Conference (2014 CCDC)
,
Changsha, China
,
May 31–June 2
, pp.
2745
2748
.
30.
Abdulrahim
,
A. T.
,
Diso
,
I. S.
, and
Oumarou
,
M. B.
,
2011
, “
Development of a Solar Tracking Bi-Focal Collectors
,”
Cont. J. Renewable Energy
,
2
(
2
), pp.
19
33
.
31.
Roos
,
T.
,
Zwane
,
N.
,
Kruger
,
E.
,
Perumal
,
S.
, and
Cathro
,
R.
,
2007
,
Proceeding of ISES World Congress
, Vol.
I–V
,
D.
Yogi Goswami
and
Y.
Zhao
, eds.,
Springer
,
Berlin/Heidelberg
, pp.
1773
1781
.
32.
Pfahl
,
A.
,
Buck
,
R.
, and
Rehschuh
,
K.
,
2014
, “
Method for Controlling the Alignment of a Heliostat With Respect to a Receiver, Heliostat Device and Solar Power Plant
,” US Patent, No. US 8,651,100 B2.
33.
Ries
,
H.
, and
Schubnell
,
M.
,
1990
, “
The Optics of a Two-Stage Solar Furnace
,”
Sol. Energy Mater.
,
21
(
2–3
), pp.
213
217
.
34.
Chen
,
Y. T.
,
Kribus
,
A.
,
Lim
,
B. H.
,
Lim
,
C. S.
,
Chong
,
K. K.
,
Karni
,
J.
,
Buck
,
R.
,
Pfahl
,
A.
, and
Bligh
,
T. P.
,
2004
, “
Comparison of Two Sun-Tracking Methods in the Application of a Heliostat Field
,”
ASME J. Sol. Energy Eng.
,
126
(1), pp.
638
644
.
35.
Diaz
,
N. P.
,
Benitez
,
V.
, and
Ramirez
,
J. P.
,
2012
, “
Stepper Motor Modeling and Control Design for a 1.5 Square Meters Heliostat Prototype
,”
World Automation Congress
,
Puerto Vallarta, MX,
June 24–28, pp.
1
6
.
36.
Jirasuwankul
,
N.
, and
Manop
,
C.
,
2017
, “
A Lab-Scale Heliostat Positioning Control Using Fuzzy Logic-Based Stepper Motor Drive with Micro-Step and Multi-Frequency Mode
,”
IEEE International Conference on Fuzzy Systems (FUZZ-IEEE)
,
Naples, Italy,
July 9–12
.
37.
Quero
,
J. M.
,
Aracil
,
C.
,
Franquelo
,
L. G.
,
Ricart
,
J.
,
Ortega
,
P. R.
,
Dominguez
,
M.
,
Castaner
,
L. M.
, and
Osuna
,
R.
,
2007
, “
Tracking Control System Using an Incident Radiation Angle Microsensor
,”
IEEE Trans. Ind. Electron.
,
54
(
2
), pp.
1207
1216
.
38.
Reboul
,
Q. J. M.
,
Ortega
,
G. J.
, and
Franquelo
,
L. G.
,
1999
, “
Sensor Electr_Onico Para la Medida de la Posici_on Angular de un Objeto Luminiscente
,” Spanish Patent No. P9 901 385.
39.
Brey
,
J. J.
,
Quero
,
J. M.
,
Franquelo
,
L. G.
,
Dominquez
,
M.
, and
Castaner
,
L.
,
2002
, “
Light Source Tracking Microsensor for Solar Power Plants
,”
MST News
,
3
(
1
), pp.
45
46
.
40.
Aiuchi
,
K.
,
Yoshida
,
K.
,
Onozaki
,
M.
,
Katayama
,
Y.
,
Nakamura
,
M.
, and
Nakamura
,
K.
,
2006
, “
Sensor-Controlled Heliostat With an Equatorial Mount
,”
Sol. Energy
,
80
(
9
), pp.
1089
1097
.
41.
Yogev
,
A.
, and
Krupkin
,
V.
,
1999
, “
Control of a Heliostat Field in a Solar Energy Plant
,” US Patent, No. 5862799.
42.
Kribus
,
A.
,
Vishnevetsky
,
I.
,
Yogev
,
A.
, and
Rubinov
,
T.
,
2004
, “
Closed-Loop Control of Heliostats
,”
Energy
,
29
(
5–6
), pp.
905
913
.
43.
Convery
,
M. R.
,
2011
, “
Closed-Loop Control for Power Tower Heliostats
,”
Processing of SPIE Solar Energy and Technology
,
San Diego, CA
. High and Low Concentrator Systems for Solar Electric Applications VI, Vol.
81080M
.
44.
Convery
,
M. R.
,
2013
, “
System and Method for Aligning Heliostats of a Solar Power Tower
,” US Patent, No. US 8,344,305 B2.
45.
Besarati
,
S. M.
,
Goswami
,
D. Y.
, and
Stefanakos
,
E. K.
,
2014
, “
Optimal Heliostat Aiming Strategy for Uniform Distribution of Heat Flux on the Receiver of a Solar Power Tower Plant
,”
Energy Convers. Manage.
,
84
, pp.
234
243
.
46.
Buck
,
R.
,
2013
, “
Heliostat Field Layout Improvement by Nonrestricted Refinement
,”
ASME J. Sol. Energy Eng.
136
(
2
), p.
021014
.
47.
Belhomme
,
B.
,
Pitz-Paal
,
R.
, and
Schwarzbözl
,
P.
,
2014
, “
Optimization of Heliostat Aim Point Selection for Central Receiver Systems Based on the Ant Colony Optimization Metaheuristic
,”
ASME J. Sol. Energy Eng.
,
136
(
1
), p.
011005
.
48.
Hamanah
,
W. M.
,
Abido
,
M. A.
, and
Alhems
,
L. M.
,
2020
, “
Optimum Sizing of Hybrid PV, Wind, Battery and Diesel System Using Lightning Search Algorithm
,”
Arabian J. Sci. Eng
,
45
(
3
), pp.
1871
1883
.
49.
Weijie
,
D.
, and
Xuemei
,
Z.
,
2017
, “
Modeling and Simulation of Heliostats Field in Solar Power Tower
,”
Proceedings of the 29th Chinese Control and Decision Conference (CCDC)
,
Chongqing, China
,
May 28–30
, pp.
3246
3251
.
50.
Yao
,
Y.
,
Hu
,
Y.
,
Gao
,
S.
,
Yang
,
G.
, and
Du
,
J.
,
2014
, “
A Multipurpose Dual-Axis Solar Tracker With Two Tracking Strategies
,”
Renewable Energy
,
72
, pp.
88
98
.
51.
Zhang
,
H. L.
,
Baeyens
,
J.
,
Degreve
,
J.
, and
Caceres
,
G.
,
2013
, “
Concentrated Solar Power Plants : Review and Design Methodology
,”
Renewable Sustainable Energy Rev.
,
22
, pp.
466
481
.
52.
Patin
,
N.
,
2015
,
Power Electronics Applied to Industrial Systems and Transports: Volume 2, Power Converters and Their Control
, Vol.
2
,
ISTE Press Ltd—Elsevier Inc
,
London, UK
, pp.
1
34
.
53.
Kulkarni
,
A.
, and
Beulet
,
A. S. P.
,
2019
, “
Statistical Analysis of Accelerometer, Gyroscope With State Estimation
,”
Int. J. Eng. Adv. Technol.
,
9
(
1S3
), pp.
139
143
.
54.
InvenSense
, “
MPU-6000and MPU-6050 Product Specification
,” InvenSense Inc., Doc. No.: PS-MPU-6000A-00Revision: 3.4Release.
55.
Cameron
,
N.
,
2019
,
Arduino Applied: Comprehensive Projects for Everyday Electronics
,
Apress
,
Edinburg, UK
, p.
552
.
56.
Salem
,
A.
,
2020
, “
Design, Implementation and Control of a SiC-Based T5MLC Induction Drive System
,”
IEEE Access
,
8
, pp.
82769
82780
.
57.
Roderick
,
M. L.
,
1992
, “
Methods for Calculating Solar Position and Day Length Including Computer Programs and Subroutines
,” Department of Primary Industries and Regional Development, Western Australia, Perth, Resource Management Technical Report No. 137.
58.
Debbache
,
M.
,
Takilalte
,
A.
,
Mahfoud
,
O.
,
Karoua
,
H.
,
Bouaichaoui
,
S.
,
Laissaoui
,
M.
, and
Hamidat
,
A.
,
2016
, “
Mathematical Modelization of an Azimuthal—Elevation Tracking System of Small Scale Heliostat
,”
Int. J. Control Theory Appl.
,
9
(
38
), pp.
111
120
.
59.
Guo
,
M.
,
Wang
,
Z.
,
Zhang
,
J.
,
Sun
,
F.
, and
Zhang
,
X.
,
2011
, “
Accurate Altitude—Azimuth Tracking Angle Formulas for a Heliostat With Mirror—Pivot Offset and Other Fixed Geometrical Errors
,”
Sol. Energy
,
85
(
5
), pp.
1091
1100
.
60.
Hamanah
,
W. M.
,
Salem
,
A.
,
Abido
,
M. A.
,
Habetler
,
T. G.
, and
Qwbaiba
,
A. M.
,
2021
, “
Dual-Axis Tracking Electrical Drives for Solar Power Tower
,”
Proceedings of the 19th International Conference on Renewable Energies and Power Quality
,
Almeria, Spain
,
July 28–30
, RE&PQJ, Vol.
19
.
61.
Stoffel
,
T.
,
2013
,
Terms and Definitions, Solar Energy Forecasting and Resource Assessment
,
Elsevier, Academic Press
,
Sawston, UK
, pp.
1
19
.
62.
Technique
,
O.
, and
Adewusi
,
S.
,
2016
, “
Modeling and Parameter Identification of a DC Motor Using Constraint Modeling and Parameter Identification of a DC Motor Using Constraint Optimization Technique
,”
IOSR J. Mech. Civ. Eng.
,
13
(
6
), pp.
46
56
.
63.
Fedak
,
V.
,
Balogh
,
T.
, and
Zaskalicky
,
P.
,
2012
, “Dynamic Simulation of Electrical Machines and Drive Systems Using MATLAB GUI,”
MATLAB—A Fundamental Tool for Scientific Computing and Engineering Applications—Volume 1
,
V.
Katsikis
, ed.,
IntechOpen
,
London
, pp.
317
342
.
64.
Kim
,
M.-S.
, and
Chung
,
S.-C.
,
2006
, “
Integrated Design Methodology of Ball-Screw Driven Servomechanisms With Discrete Controllers. Part I : Modelling and Performance Analysis
,”
Mechatronics
,
16
(
8
), pp.
491
502
.
65.
Hughes
,
A.
, and
Drury
,
B.
,
2019
,
Electric Motors and Drives
, 5th ed.,
Elsevier Ltd.
,
Sawston, UK
, pp.
1
39
. https://www.elsevier.com/books/electric-motors-and-drives/hughes/978-0-08-102615-1
66.
Budig
,
P. K.
,
2000
, “
The Application of Linear Motors
,”
Proceedings IPEMC, Third International Power Electronics and Motion Control Conference
,
Beijing, China
,
Aug. 15–18
,
IEEE Publisher
, Vol. 3, pp.
1336
1341
.
67.
Pearson
,
J.
, and
Chen
,
B.
,
1986
, “
An Assessment of Heliostat Control System Methods
,” Colorado, US Department of Energy, Solar Energy Research Institute, Report No. 5102.31.
You do not currently have access to this content.