Abstract

The world's need for drinkable water is increasing with a growing population. The desalination process using solar energy is the cheapest and most straightforward method that can be used to generate pure water from saline water by utilizing energy from the sun's free heat source. A semispherical and chamber stepwise basin solar still with an inclined glass cover, with and without photovoltaic (PV)-powered electrical heaters as another power source, can increase the rate of evaporation of saline water, thus increasing the productivity of semispherical solar still. In this investigation, a conventional solar still and semispherical solar still with and without PV-powered electrical heaters were invented and worked in parallel with the experimental setup to make a good comparison between these models. The experimental results show that stepped semispherical with PV-powered electrical heater and without PV-powered electrical heater solar stills enhanced the productivity of freshwater from a conventional solar still by 156.6% and 72.5%, respectively. The theoretically simulated model is obtained using mathcad software and is compared with experimental results. Semispherical solar still productivity increases with increased solar intensity and with a PV-powered electrical heater as an additional power source. The theoretical results concluded from the mathematical model are in good agreement with experimental results.

References

1.
Kazemi
,
H.
,
Fallah
,
K.
, and
Hosseini
,
M. J.
,
2017
, “
A Review of Solar Energy Driven HDH and Solar Still Desalination Technologies
,”
J. Sol. Energy Res.
,
2
(
3
), pp.
79
87
.
2.
Manchanda
,
H.
, and
Kumar
,
M.
,
2017
, “
Study of Water Desalination Techniques and a Review on Active Solar Distillation Methods
,”
Environ. Prog. Sustainable Energy
,
37
(
1
), pp.
444
446
.
3.
Gude
,
V. G.
,
Nirmalakhandan
,
N.
, and
Deng
,
S.
,
2011
, “
Desalination Using Solar Energy: Towards Sustainability
,”
Energy
,
36
(
1
), pp.
78
85
.
4.
Al-Hayeka
,
I.
, and
Badran
,
O. O.
,
2004
, “
The Effect of Using Different Designs of Solar Stills on Water Distillation
,”
Desalination
,
169
(
2
), pp.
121
127
.
5.
Badran
,
O. O.
,
2007
, “
Experimental Study of the Enhancement Parameters on a Single Slope Solar Still Productivity
,”
Desalination
,
209
(
1–3
), pp.
136
143
.
6.
Velmurugan
,
V.
, and
Srithar
,
K.
,
2011
, “
Performance Analysis of Solar Stills Based on Various Factors Affecting the Productivity—A Review
,”
Renewable Sustainable Energy Rev.
,
15
(
2
), pp.
1294
1304
.
7.
Rajaseenivasan
,
T.
,
Nelson Raja
,
P.
, and
Srithar
,
K.
,
2014
, “
An Experimental Investigation on a Solar Still With an Integrated Flat Plate Collector
,”
Desalination
,
347
, pp.
131
137
.
8.
Samee
,
M. A.
,
Mirza
,
U. K.
,
Majeed
,
T.
, and
Ahmad
,
N.
,
2007
, “
Design and Performance of a Simple Single Basin Solar Still
,”
Renewable Sustainable Energy Rev.
,
11
(
3
), pp.
543
549
.
9.
Nafey
,
A. S.
,
Abdelkader
,
M.
,
Abdelmotalip
,
A.
, and
Mabrouk
,
A. A.
,
2000
, “
Parameters Affecting Solar Still Productivity
,”
Energy Convers. Manage.
,
41
(
16
), pp.
1797
1809
.
10.
Muftah
,
A. F.
,
Alghoul
,
M. A.
,
Fudholi
,
A.
,
Abdul-Majeed
,
M. M.
, and
Sopian
,
K.
,
2014
, “
Factors Affecting Basin Type Solar Still Productivity: A Detailed Review
,”
Renewable Sustainable Energy Rev.
,
32
, pp.
430
447
.
11.
Badran
,
O. O.
, and
Al-Tahaineh
,
H. A.
,
2005
, “
The Effect of Coupling a Flat-Plate Collector on the Solar Still Productivity
,”
Desalination
,
183
(
1
), pp.
137
142
.
12.
Joseph
,
J.
,
Saravanan
,
R.
, and
Renganarayanan
,
S.
,
2005
, “
Studies on a Single-Stage Solar Desalination System for Domestic Applications
,”
Desalination
,
173
(
1
), pp.
77
82
.
13.
Sathyamurthy
,
R.
,
El-Agouz
,
S. A.
, and
Dharmaraj
,
V.
,
2015
, “
Experimental Analysis of a Portable Solar Still With Evaporation and Condensation Chambers
,”
Desalination
,
367
, pp.
180
185
.
14.
Kabeel
,
A. E.
,
Omara
,
Z. M.
, and
Younes
,
M. M.
,
2015
, “
Techniques Used to Improve the Performance of the Stepped Solar Still—A Review
,”
Renewable Sustainable Energy Rev.
,
46
, pp.
178
188
.
15.
Sathyamurthy
,
R.
,
Samuel
,
D. G. H.
,
Nagarajan
,
P. K.
, and
Arunkumar
,
T.
,
2016
, “
Geometrical Variations in Solar Stills for Improving the Fresh Water Yield—A Review
,”
Desalin. Water Treat.
,
57
(
45
), pp.
21145
21159
.
16.
Abdallah
,
S.
,
Badran
,
O. O.
, and
Abu-Khader
,
M. M.
,
2008
, “
Performance Evaluation of a Modified Design of a Single Slope Solar Still
,”
Desalination
,
219
(
1–3
), pp.
222
230
.
17.
Modi
,
K. V.
,
Shukla
,
D. L.
, and
Ankoliya
,
D. B.
,
2019
, “
A Comparative Performance Study of Double Basin Single Slope Solar Still With and Without Using Nanoparticles
,”
ASME J. Sol. Energy Eng.
,
141
(
3
), p.
031008
.
18.
Tiwari
,
G. N.
,
Meraj
,
M. D.
,
Khan
,
M. E.
, and
Dwevedi
,
V. K.
,
2021
, “
Effect of Series and Parallel Combination of Photovoltaic Thermal Collectors on the Performances of Integrated Active Solar Still
,”
ASME J. Therm. Sci. Eng. Appl.
,
14
(
8
), p.
081006
.
19.
Abakr
,
Y. A.
, and
Ismail
,
A. F.
,
2005
, “
Theoretical and Experimental Investigation of a Novel Multistage Evacuated Solar Still
,”
ASME J. Sol. Energy Eng.
,
127
(
3
), pp.
381
385
.
20.
Al-Garni
,
A. Z.
,
2012
, “
Productivity Enhancement of Solar Still Using Water Heater and Cooling Fan
,”
ASME J. Sol. Energy Eng.
,
134
(
3
), p.
031006
.
21.
Tiwari
,
A. K.
, and
Tiwari
,
G. N.
,
2008
, “
Effect of Cover Inclination and Water Depth on Performance of a Solar Still for Indian Climatic Conditions
,”
ASME J. Sol. Energy Eng.
,
130
(
2
), p.
024502
.
22.
Arunkumar
,
T.
,
Jayaprakash
,
R.
,
Denkenberger
,
D. C.
,
Ahsan
,
A.
,
Okundamiya
,
M. S.
,
Kumar
,
S.
,
Tanaka
,
H.
, and
Aybar
,
H. S.
,
2012
, “
An Experimental Study on a Hemispherical Solar Still
,”
Desalination
,
286
, pp.
342
348
.
23.
Haddad
,
O. M.
,
Al-Nimr
,
M. A.
, and
Maqableh
,
A.
,
2000
, “
Enhanced Solar Still Performance Using a Radiative Cooling System
,”
Renewable Energy
,
21
(
3–4
), pp.
459
469
.
24.
Abu-Arabi
,
M.
,
Zurigat
,
Y.
,
Al-Hinai
,
H.
, and
Al-Hiddabi
,
S.
,
2002
, “
Modeling and Performance Analysis of a Solar Desalination Unit With Double-Glass Cover Cooling
,”
Desalination
,
143
(
2
), pp.
173
182
.
25.
Al-Nimr
,
M. A.
,
Al-Ammari
,
W. A.
, and
Dahdolan
,
M.
,
2017
, “
Utilizing the Evaporative Cooling to Enhance the Performance of a Solar TEG System and to Produce Distilled Water
,”
Sol. Energy
,
146
, pp.
209
220
.
26.
Sathyamurthy
,
R.
,
El-Agouz
,
S. A.
,
Nagarajan
,
P. K.
,
Subramani
,
J.
,
Arunkumar
,
T.
,
Mageshbabu
,
D.
,
Madhu
,
B.
,
Bharathwaaj
,
R.
, and
Prakash
,
N.
,
2017
, “
A Review of Integrating Solar Collectors to Solar Still
,”
Renewable Sustainable Energy Rev.
,
77
(
Sept.
), pp.
1069
1097
.
27.
Panchal
,
H. N.
,
2015
, “
Performance Analysis of Solar Still With Cow Dung Cakes and Blue Metal Stones,”
Front. Energy
,
9
(
2
), pp.
180
186
.
28.
Akash
,
B. A.
,
Mohsen
,
M. S.
,
Osta
,
O.
, and
Elayan
,
Y.
,
1998
, “
Experimental Evaluation of a Single-Basin Solar Still Using Different Absorbing Materials
,”
Renewable Energy
,
14
(
1–4
), pp.
307
310
.
29.
Abdallah
,
S.
,
Abu-Khader
,
M. M.
, and
Badran
,
O. O.
,
2009
, “
Effect of Various Absorbing Materials on the Thermal Performance of Solar Stills
,”
Desalination
,
242
(
1–3
), pp.
128
137
.
30.
Gugulothu
,
R.
,
Somanchi
,
N. S.
,
Devi
,
R. S. R.
, and
Banoth
,
H. B.
,
2015
, “
Experimental Investigations on Performance Evaluation of a Single Basin Solar Still Using Different Energy Absorbing Materials
,”
Aquat. Procedia
,
4
(ICWRCOE'15), pp.
1483
1491
.
31.
Bansal
,
G.
,
Singh
,
D. B.
,
Kishore
,
C.
, and
Dogra
,
V.
,
2020
, “
Effect of Absorbing Material on the Performance of Solar Still: A Mini Review
,”
Mater. Today Proc.
,
26
(
2
), pp.
1884
1887
.
32.
Atouei
,
S. A.
,
Ranjbar
,
A. A.
, and
Rezania
,
A.
,
2017
, “
Experimental Investigation of Two-Stage Thermoelectric Generator System Integrated With Phase Change Materials
,”
Appl. Energy
,
208
, pp.
332
343
.
33.
Al-Nimr
,
M. A.
, and
Dahdolan
,
M. E.
,
2015
, “
Modeling of a Novel Concentrated Solar Still Enhanced With a Porous Evaporator and an Internal Condenser
,”
Sol. Energy
,
114
, pp.
8
16
.
34.
Kabeel
,
A. E.
,
Harby
,
K.
,
Abdelgaied
,
M.
, and
Eisa
,
A.
,
2021
, “
Performance Improvement of a Tubular Solar Still Using V-Corrugated Absorber With Wick Materials : Numerical and Experimental Investigations
,”
Sol. Energy
,
217
, pp.
187
199
.
35.
Singh
,
A. K.
,
2021
, “
Heliyon An Inclusive Study on New Conceptual Designs of Passive Solar Desalting Systems
,”
Heliyon
,
7
(
2
), p.
e05793
.
36.
Rastegar
,
S.
,
Kargarsharifabad
,
H.
,
Rahbar
,
N.
, and
Shafii
,
B. M.
,
2020
, “
Distilled Water Production With Combination of Solar Still and Thermosyphon Heat Pipe Heat Exchanger Coupled With Indirect Water Bath Heater—Experimental Study and Thermoeconomic Analysis
,”
Appl. Therm. Eng.
,
176
, p.
115437
.
37.
Taamneh
,
Y.
,
Manokar
,
A. M.
,
Thalib
,
M. M.
,
Kabeel
,
A. E.
,
Sathyamurthy
,
R.
, and
Chamkha
,
A. J.
,
2020
, “
Extraction of Drinking Water From Modified Inclined Solar Still Incorporated With Spiral Tube Solar Water Heater
,”
J. Water Process Eng.
,
38
, p.
101613
.
38.
Kabeel
,
A. E.
,
Abdelgaied
,
M.
,
Harby
,
K.
, and
Eisa
,
A.
,
2020
, “
Augmentation of Diurnal and Nocturnal Distillate of Modified Tubular Solar Still Having Copper Tubes Filled With PCM in the Basin
,”
J. Energy Storage
,
32
, p.
101992
.
39.
Abdullah
,
A. S.
,
Younes
,
M. M.
,
Omara
,
Z. M.
, and
Essa
,
F. A.
,
2020
, “
New Design of Trays Solar Still with Enhanced Evaporation Methods—Comprehensive Study
,”
Sol. Energy
,
203
, pp.
164
174
.
40.
Velmurugan
,
V.
,
Kumaran
,
S. S.
,
Prabhu
,
N. V.
, and
Srithar
,
K.
,
2008
, “
Productivity Enhancement of Stepped Solar Still—Performance Analysis
,”
Therm. Sci.
,
12
(
3
), pp.
153
163
.
41.
Velmurugan
,
V.
,
Kumar
,
K. J. N.
,
Haq
,
T. N.
, and
Srithar
,
K.
,
2009
, “
Performance Analysis in Stepped Solar Still for Effluent Desalination
,”
Energy
,
34
(
9
), pp.
1179
1186
.
42.
Kabeel
,
A. E.
,
Khalil
,
A.
,
Omara
,
Z. M.
, and
Younes
,
M. M.
,
2012
, “
Theoretical and Experimental Parametric Study of Modified Stepped Solar Still
,”
Desalination
,
289
, pp.
12
20
.
43.
Alaudeen
,
A.
,
Johnson
,
K.
,
Ganasundar
,
P.
,
Abuthahir
,
A. S.
, and
Srithar
,
K.
,
2014
, “
Study on Stepped Type Basin in a Solar Still
,”
J. King Saud Univ. Eng. Sci.
,
26
(
2
), pp.
176
183
.
44.
Azooz
,
A. A.
, and
Younis
,
G. G.
,
2016
, “
Effect of Glass Inclination Angle on Solar Still Performance
,”
J. Renewable Sustainable Energy
,
8
(
3
), p.
033702
.
45.
Taghvaei
,
H.
,
Taghvaei
,
H.
,
Jafarpur
,
K.
,
Estahbanati
,
M. R. K.
,
Feilizadeh
,
M.
,
Feilizadeh
,
M.
, and
Ardekani
,
A. S.
,
2014
, “
A Thorough Investigation of the Effects of Water Depth on the Performance of Active Solar Stills
,”
Desalination
,
347
, pp.
77
85
.
46.
Tiwari
,
G. N.
,
Sumegha
,
C.
, and
Yadav
,
Y. P.
,
1991
, “
Effect of Water Depth on the Transient Performance of a Double Basin Solar Still
,”
Energy Convers. Manage.
,
32
(
3
), pp.
293
301
.
47.
Srithar
,
K.
, and
Mani
,
A.
,
2004
, “
Analysis of a Single Cover FRP Flat Plate Collector for Treating Tannery Effluent
,”
Appl. Therm. Eng.
,
24
(
5–6
), pp.
873
883
.
48.
Al-Hinai
,
H.
,
Al-Nassri
,
M. S.
, and
Jubran
,
B. A.
,
2002
, “
Effect of Climatic, Design and Operational Parameters on the Yield of a Simple Solar Still
,”
Energy Convers. Manage.
,
43
(
13
), pp.
1639
1650
.
49.
Fernández
,
J. L.
, and
Chargoy
,
N.
,
1990
, “
Multi-stage, Indirectly Heated Solar Still
,”
Sol. Energy
,
44
(
4
), pp.
215
223
.
50.
Badran
,
O. O.
, and
Abu-Khader
,
M. M.
,
2007
, “
Evaluating Thermal Performance of a Single Slope Solar Still
,”
Heat Mass Transfer
,
43
(
10
), pp.
985
995
.
51.
Mousavi
,
S. M. T.
,
Egelioglu
,
F.
, and
Ilkan
,
M.
,
2020
, “
Experimental and Numerical Study of the Effect of Various Design Configurations on the Thermal Performance of Solar Still Desalination
,”
Energy Sources, Part A
,
6
(
9
), pp.
1
15
.
52.
Singh
,
D. B.
,
Yadav
,
J. K.
,
Dwivedi
,
V. K.
,
Kumar
,
S.
,
Tiwari
,
G. N.
, and
Al-Helal
,
I. M.
,
2016
, “
Experimental Studies of Active Solar Still Integrated With Two Hybrid PVT Collectors
,”
Sol. Energy
,
130
, pp.
207
223
.
53.
Zurigat
,
Y. H.
, and
Abu-arabi
,
M. K.
,
2004
, “
Modelling and Performance Analysis of a Regenerative Solar Desalination Unit
,”
Appl. Therm. Eng.
,
24
(
7
), pp.
1061
1072
.
54.
Shukla
,
S. K.
, and
Sorayan
,
V. P. S.
,
2005
, “
Thermal Modeling of Solar Stills : An Experimental Validation
,”
Renewable engergy
,
30
(
5
), pp.
683
699
.
55.
Srithar
,
K.
, and
Mani
,
A.
,
2003
, “
Comparison Between Simulated and Experimental Performance of an Open Solar Flat Plate Collector for Treating Tannery Effluent
,”
Int. Commun. Heat Mass Transfer
,
30
(
4
), pp.
505
514
.
56.
Srithar
,
K.
, and
Mani
,
A.
,
2006
, “
Studies on Solar Flat Plate Collector Evaporation Systems for Tannery Effluent (Soak Liquor)
,”
J. Zhejiang Univ. Sci.
,
7
(
11
), pp.
1870
1877
.
57.
Tiwari
,
G. N.
,
Dimri
,
V.
,
Singh
,
U.
,
Chel
,
A. L.
, and
Sarkar
,
B. K.
,
2007
, “
Comparative Thermal Performance Evaluation of an Active Solar Distillation System
,”
Int. J. Energy Res.
,
31
(
15
), pp.
1465
1482
.
58.
Abd Elkader
,
M.
,
Safwat
,
N. A.
,
Abd Elmotalip
,
A.
, and
Mabrouk
,
A. A.
,
1999
, “
Experimental Evaluation of Solar Still Mathematical Models
,”
Proceedings of the Fourth International Water Technology Conference IWTC 99
,
Alexandria, Egypt
,
Mar. 5–8
, pp.
197
205
.
59.
Narayanan
,
S. S.
,
Yadav
,
A.
, and
Khaled
,
M. N.
,
2020
, “
A Concise Review on Performance Improvement of Solar Stills
,”
SN Appl. Sci.
,
2
(
3
), pp.
1
15
.
You do not currently have access to this content.