Abstract

The photovoltaics (PV) industry is booming at an impressive rate. Knowledge of the outdoor performance of different PV technologies under different climatic conditions is becoming increasingly important for all stakeholders. The aim of this research was to perform the outdoor characterization of three PV technologies in a tropical climate and evaluate their performances with the aid of a set of key performance indicators. An innovative energy autonomous outdoor test facility has been used to measure the weather conditions and the IV curves of mono-Si, poly-Si, and Copper Indium Gallium diSelenide (CIGS) PV modules. Each IV curve was sampled within less than a second, for every 10 min, between sunrise and sunset for a whole year, representing a data set of around 28,000 IV curves of 240 points each. The variations of current, voltage, and power were thoroughly studied for changes in temperature and irradiance. This paper reports the variations of temperature coefficients of current, voltage, and power with the intensity of light. While PV module documentation only presents the temperature coefficients of the short circuit current and open circuit voltage at standard test conditions, this paper additionally provides highly valuable information to PV system designers on the variation of these coefficients in the field. The research is also the first to report the variations of the fill factor with temperature and irradiance. In general, the wafer technologies were found to have a better performance than the thin film technology. Moreover, the open-circuit temperature coefficient was found to improve for higher irradiances only for the wafer technologies, while that for the thin-film technology experienced a degradation. The temperature coefficient of current for the mono-Si module was found to be positive at low irradiance levels, but negative at higher irradiance levels.

References

1.
André
,
T.
,
Gibb
,
D.
, and
Murdock
,
H. E.
,
2020
, “
Renewables 2020 Global Status Report
,”
REN21, Paris
, https://www.ren21.net/wp-content/uploads/2019/05/gsr_2020_full_report_en.pdf
2.
Huld
,
T.
,
Gottschalg
,
R.
,
Beyer
,
H. G.
, and
Topič
,
M.
,
2010
, “
Mapping the Performance of PV Modules, Effects of Module Type and Data Averaging
,”
Sol. Energy
,
84
(
2
), pp.
324
338
.
3.
Green
,
M. A.
,
2003
, “
General Temperature Dependence of Solar Cell Performance and Implications for Device Modelling
,”
Prog. Photovoltaics Res. Appl.
,
11
(
5
), pp.
333
340
.
4.
Basore
,
P. A.
,
1994
, “
Defining Terms for Crystalline Silicon Solar Cells
,”
Prog. Photovoltaics Res. Appl.
,
2
(
2
), pp.
177
179
.
5.
Vumbugwa
,
M.
,
Crozier McCleland
,
J. L.
,
van Dyk
,
E. E.
, and
Vorster
,
F. J.
,
2021
, “
Effects of Dynamic Operational Conditions on Thermal Infrared Imaging of Monocrystalline Silicon Photovoltaic Modules
,”
ASME J. Sol. Energy Eng.
,
143
(
2
), p.
024501
.
6.
Hishikawa
,
Y.
,
Doi
,
T.
,
Higa
,
M.
,
Yamagoe
,
K.
, and
Ohshima
,
H.
,
2016
, “
Precise Outdoor PV Module Performance Characterization Under Unstable Irradiance
,”
IEEE J. Photovoltaics
,
6
(
5
), pp.
1221
1227
.
7.
Hüttl
,
B.
,
Gottschalk
,
L.
,
Schneider
,
S.
,
Pflaum
,
D.
, and
Schulze
,
A.
,
2019
, “
Accurate Performance Rating of Photovoltaic Modules Under Outdoor Test Conditions
,”
Sol. Energy
,
177
, pp.
737
745
.
8.
Khatib
,
T.
,
Direya
,
R.
, and
Said
,
A.
,
2021
, “
An Improved Method for Extracting Photovoltaic Module I–V Characteristic Curve Using Hybrid Learning Machine System
,”
ASME J. Sol. Energy Eng.
,
143
(
5
), p.
051006
.
9.
Hosseini
,
S.
,
Taheri
,
S.
,
Farzaneh
,
M.
,
Taheri
,
H.
, and
Narimani
,
M.
,
2018
, “
Determination of Photovoltaic Characteristics in Real Field Conditions
,”
IEEE J. Photovoltaics
,
8
(
2
), pp.
572
580
.
10.
Eberle
,
R.
,
Haag
,
S. T.
,
Geisemeyer
,
I.
,
Padilla
,
M.
, and
Schubert
,
M. C.
,
2018
, “
Temperature Coefficient Imaging for Silicon Solar Cells
,”
IEEE J. Photovoltaics
,
8
(
4
), pp.
930
936
.
11.
Dupre
,
O.
,
Vaillon
,
R.
, and
Green
,
M. A.
,
2016
, “
Experimental Assessment of Temperature Coefficient Theories for Silicon Solar Cells
,”
IEEE J. Photovoltaics
,
6
(
1
), pp.
56
60
.
12.
Mathews
,
I.
,
King
,
P. J.
,
Stafford
,
F.
, and
Frizzell
,
R.
,
2016
, “
Performance of III-V Solar Cells as Indoor Light Energy Harvesters
,”
IEEE J. Photovoltaics
,
6
(
1
), pp.
230
235
.
13.
Alonso-Abella
,
M.
,
Chenlo
,
F.
,
Nofuentes
,
G.
, and
Torres-Ramírez
,
M.
,
2014
, “
Analysis of Spectral Effects on the Energy Yield of Different PV (Photovoltaic) Technologies: The Case of Four Specific Sites
,”
Energy
,
67
, pp.
435
443
.
14.
Polo
,
J.
,
Alonso-Abella
,
M.
,
Ruiz-Arias
,
J. A.
, and
Balenzategui
,
J. L.
,
2017
, “
Worldwide Analysis of Spectral Factors for Seven Photovoltaic Technologies
,”
Sol. Energy
,
142
, pp.
194
203
.
15.
Nakada
,
Y.
,
Fukushige
,
S.
,
Minemoto
,
T.
, and
Takakura
,
H.
,
2009
, “
Seasonal Variation Analysis of the Outdoor Performance of Amorphous Si Photovoltaic Modules Using the Contour map
,”
Sol. Energy Mater. Sol. Cells
,
93
(
3
), pp.
334
337
.
16.
Minemoto
,
T.
,
Fukushige
,
S.
, and
Takakura
,
H.
,
2009
, “
Difference in the Outdoor Performance of Bulk and Thin-Film Silicon-Based Photovoltaic Modules
,”
Sol. Energy Mater. Sol. Cells
,
93
(
6–7
), pp.
1062
1065
.
17.
Akhmad
,
K.
,
Kitamura
,
A.
,
Yamamoto
,
F.
,
Okamoto
,
H.
,
Takakura
,
H.
, and
Hamakawa
,
Y.
,
1997
, “
Outdoor Performance of Amorphous Silicon and Polycrystalline Silicon PV Modules
,”
Sol. Energy Mater. Sol. Cells
,
46
(
3
), pp.
209
218
.
18.
University of Mauritius
. “
Solar Map of Mauritius, Rodrigues & Agalega
,”
2021
, http://solarmap.uom.ac.mu/
19.
Ramgolam
,
Y. K.
,
Shamachurn
,
H.
, and
Coret
,
J. Y.
, 2019, “
Energy Autonomous and Smart Outdoor PV Module Characterisation Facility
,”
2nd International Conference on Next Generation Computing Applications 2019, Next Comp 2019—Proceedings
,
Balaclava, Mauritius
, Sept. 19–21, pp.
1
6
.
20.
De Soto
,
W.
,
Klein
,
S. A.
, and
Beckman
,
W. A.
,
2006
, “
Improvement and Validation of a Model for Photovoltaic Array Performance
,”
Sol. Energy
,
80
(
1
), pp.
78
88
.
21.
T. U.
Townsend
,
1989
, “
A Method for Estimating the Long-Term Performance of Direct-Coupled Photovoltaic Systems
,”
MSc Thesis
,
University of Wisconsin-Madison
,
Madison, WI
.
22.
De Blas
,
M. A.
,
Torres
,
J. L.
,
Prieto
,
E.
, and
García
,
A.
,
2002
, “
Selecting a Suitable Model for Characterizing Photovoltaic Devices
,”
Renewable Energy
,
25
(
3
), pp.
371
380
.
23.
Cotfas
,
D. T.
,
Cotfas
,
P. A.
, and
Kaplanis
,
S.
,
2013
, “
Methods to Determine the dc Parameters of Solar Cells: A Critical Review
,”
Renewable Sustainable Energy Rev.
,
28
, pp.
588
596
.
24.
Meyer
,
E. L.
, and
Van Dyk
,
E. E.
,
2004
, “
Assessing the Reliability and Degradation of Photovoltaic Module Performance Parameters
,”
IEEE Trans. Reliab.
,
53
(
1
), pp.
83
92
.
25.
Prince
,
M. B.
,
1955
, “
Silicon Solar Energy Converters
,”
J. Appl. Phys.
,
26
(
5
), pp.
534
540
.
26.
Sze
,
S. M.
, and
Ng
,
K. K.
,
2008
,
Physics of Semiconductor Devices
, 3rd ed.,
Wiley India
.
27.
Augusto
,
A.
,
Herasimenka
,
S. Y.
,
King
,
R. R.
,
Bowden
,
S. G.
, and
Honsberg
,
C.
,
2017
, “
Analysis of the Recombination Mechanisms of a Silicon Solar Cell With Low Bandgap-Voltage Offset
,”
J. Appl. Phys.
,
121
(
20
), p.
205704
.
28.
Shockley
,
W.
, and
Queisser
,
H. J.
,
1961
, “
Detailed Balance Limit of Efficiency of p-n Junction Solar Cells
,”
J. Appl. Phys.
,
32
(
3
), pp.
510
519
.
29.
Jackson
,
P.
,
Hariskos
,
D.
,
Wuerz
,
R.
,
Kiowski
,
O.
,
Bauer
,
A.
,
Friedlmeier
,
T. M.
, and
Powalla
,
M.
,
2015
, “
Properties of Cu(In,Ga)Se2 Solar Cells With New Record Efficiencies up to 21.7%
,”
Phys. Status Solidi—Rapid Res. Lett.
,
9
(
1
), pp.
28
31
.
30.
Jäger
,
T.
,
Romanyuk
,
Y. E.
,
Bissig
,
B.
,
Pianezzi
,
F.
,
Nishiwaki
,
S.
,
Reinhard
,
P.
,
Steinhauser
,
J.
,
Schwenk
,
J.
, and
Tiwari
,
A. N.
,
2015
, “
Improved Open-Circuit Voltage in Cu(In,Ga)Se2 Solar Cells With High Work Function Transparent Electrodes
,”
J. Appl. Phys.
,
117
(
22
), p.
225303
.
31.
Schoop
,
U.
, “
Commercial Flexible CIGS Technology
,”
7th International Workshop on CIGS Solar Cell Technology-IW-CIGS Tech 7
,
20–24 June 2016
,
Munich, Germany
, pp.
1
19
.
32.
Haque
,
M. A.
,
Miah
,
M. A. K.
,
Hossain
,
S.
, and
Rahman
,
M. H.
,
2022
, “
Passive Cooling Configurations for Enhancing the Photovoltaic Efficiency in Hot Climatic Conditions
,”
ASME J. Sol. Energy Eng.
,
144
(
1
), p.
011009
.
33.
Decock
,
K.
,
Lauwaert
,
J.
, and
Burgelman
,
M.
,
2010
, “
Characterization of Graded CIGS Solar Cells
,”
Energy Procedia
,
2
(
1
), pp.
49
54
.
34.
Saji
,
V. S.
,
Choi
,
I. H.
, and
Lee
,
C. W.
,
2011
, “
Progress in Electrodeposited Absorber Layer for CuIn(1−x)GaxSe2 (CIGS) Solar Cells
,”
Sol. Energy
,
85
(
11
), pp.
2666
2678
.
You do not currently have access to this content.