Abstract

This article presents an innovative approach for optimizing the dimensions of cylindrical receivers for solar tower systems. In this approach, a single set of rays, representative of a complete annual ray-tracing simulation of the solar tower system, is used and processed to evaluate numerous receiver designs simultaneously and to select the optimum. The simultaneous evaluation of receiver designs is achieved by exploiting the geometrical properties of the intersection between a ray and a cylinder, which allows estimating the annual energy intercepted by receivers of different heights without the need for processing the annual set of rays more than one time. Once the annual intercepted energy is known for each receiver, the application of a costing function estimating the receiver cost as a function of its surface area allows to estimate their cost and, therefore, to select the receiver dimensions that will yield a minimum surface area for a given annual energy interception factor. The overall workflow to carry out the mentioned receiver optimization approach has been implemented by adapting several open-source tools that The Cyprus Institute (CyI) is developing in collaboration with the Australian National University (ANU) to assist in the modeling, analysis, design, and optimization of concentrated solar thermal (CST) systems. This article also presents a detailed overview of the overall simulation workflow as well as a case study demonstrating the capabilities of the approach.

References

1.
Aghaeimeybodi
,
M. C.
,
Beath
,
A. C.
, and
Webby
,
B.
,
2017
, “
Technoeconomic Analysis of Solar Tower Reference Plant
,”
CSIRO, Newcastle, NSW, Australia, Technical Report
, https://astri.org.au/wp-content/uploads/2014/11/P01-Techno-economic-analysis-of-solar-tower-reference-plant-Medhi.pdf
2.
Ho
,
C. K. S. N. L.
,
2017
, “
Advances in Central Receivers for Concentrating Solar Applications
,”
Sol. Energy.
,
152
, pp.
38
56
.
3.
Guedez
,
R.
,
Topel
,
M.
,
Conde
,
I.
,
Ferragut
,
F.
,
Callaba
,
I.
,
Spelling
,
J.
,
Hassar
,
Z.
,
Perez-Segarra
,
C. D.
, and
Laumert
,
B.
,
2016
, “
A Methodology for Determining Optimum Solar Tower Plant Configurations and Operating Strategies to Maximize Profits Based on Hourly Electricity Market Prices and Tariffs
,”
ASME J. Solar Energy Eng.
,
138
(
2
), p.
021006
.
4.
Rodríguez-Sánchez
,
M. R.
,
Sánchez-González
,
A.
,
Marugán-Cruz
,
C.
, and
Santana
,
D.
,
2014
, “
New Designs of Molten-Salt Tubular-Receiver for Solar Power Tower
,”
Energy Proc.
,
49
, pp.
504
513
.
5.
Ho
,
C. K. S. N. L.
,
2008
, “
Software and Codes for Analysis of Concentrating Solar Power Technologies
,”
Technical Report SAND2008-8053
,
Sandia National Laboratories
,
Albuquerque, NM
, p.
35
.
6.
Garcia
,
P.
,
Ferriere
,
A.
, and
Bezian
,
J. J.
,
2008
, “
Codes for Solar Flux Calculation Dedicated to Central Receiver System Applications: A Comparative Review
,”
Sol. Energy.
,
82
, pp.
189
197
.
7.
Bode
,
S. J.
, and
Gauché
,
P.
,
2012
, “
Review of Optical Software for Use in Concentrating Solar Power Systems
,”
Proceedings of the Southern African Solar Energy Conference (SASEC 2012)
,
May 21–23
,
Stellenbosch, South Africa
, pp.
1
8
.
8.
Cruz
,
N. C.
,
Redondo
,
J. L.
,
Berenguel
,
M.
,
Álvarez
,
J. D.
, and
Ortigosa
,
P. M.
,
2017
, “
Review of Software for Optical Analyzing and Optimizing Heliostat Fields
,”
Renewable. Sustainable. Energy. Rev.
,
72
, pp.
1001
1018
.
9.
Wagner
,
M. J.
, and
Wendelin
,
T.
,
2018
, “
SolarPILOT: A Power Tower Solar Field Layout and Characterization Tool
,”
Sol. Energy.
,
171
, pp.
185
196
.
10.
Caliot
,
C.
,
Benoit
,
H.
,
Guillot
,
E.
,
Sans
,
J. L.
,
Ferriere
,
A.
,
Flamant
,
G.
,
Coustet
,
C.
, and
Piaud
,
B.
,
2015
, “
Validation of a Monte Carlo Integral Formulation Applied to Solar Facility Simulations and Use of Sensitivities
,”
ASME J. Solar Energy Eng.
,
137
(
2
), p.
021019
.
11.
Dersch
,
J.
,
Schwarzbözl
,
P.
, and
Richert
,
T.
,
2011
, “
Annual Yield Analysis of Solar Tower Power Plants With Greenius
,”
ASME J. Solar Energy Eng.
,
133
(
3
), p.
031017
.
12.
Kistler
,
B. L. S. N. L.
,
1986
, “
A User’s Manual for DELSOL3: A Computer Code for Calculating the Optical Performance and Optimal System Design for Solar Thermal Central Receiver Plants
,”
Technical Report
,
Sandia National Laboratories
,
Albuquerque, NM
, p.
240
,
Report No. SAND86-8018
.
13.
Wendelin
,
T.
,
2003
, “
Soltrace: A New Optical Modeling Tool for Concentrating Solar Optics
,”
ASME 2003 International Solar Energy Conference
,
Mar. 15–18
,
Kohala Coast, Hawaii
,
American Society of Mechanical Engineers (ASME)
, pp.
253
260
.
14.
Blanco
,
M. J.
,
Amieva
,
J. M.
, and
Mancillas
,
A.
,
2005
, “
The Tonatiuh Software Development Project: An Open Source Approach to the Simulation of Solar Concentrating Systems
,”
ASME 2005 International Mechanical Engineering Congress and Exposition
,
Nov. 5–11
,
Orlando, FL
,
American Society of Mechanical Engineers (ASME)
, pp.
157
164
.
15.
Schwarzbözl
,
P.
,
Pitz-Paal
,
R.
, and
Schmitz
,
M.
,
2009
, “
Visual HFLCAL—A Software Tool for Layout and Optimisation of Heliostat Fields
,”
15th SolarPACES Conference
, T. Mancini, and R. Pitz-Paal, eds.,
Sept. 15–18
,
Berlin, Germany
, pp.
1
8
.
16.
Potter
,
D. F.
,
Kim
,
J.-S.
,
Khassapov
,
A.
,
Pascual
,
R.
,
Hetherton
,
L.
, and
Zhang
,
Z.
,
2018
, “
Heliosim: An Integrated Model for the Optimisation and Simulation of Central Receiver CSP Facilities
,”
23rd SolarPACES Conference
,
Sept. 26–29
,
Santiago, Chile
, pp.
1
11
,
AIP Conference Proceedings, 2033(210011)
.
17.
Gertig
,
C.
,
Delgado
,
A.
,
Hidalgo
,
C.
, and
Ron
,
R.
,
2014
, “
SoFiA—A Novel Simulation Tool for Central Receiver Systems
,”
Energy Proc.
,
49
, pp.
1361
1370
.
18.
Blair
,
N. N.
,
Dobo
,
A. P. N.
,
Freeman
,
J. N.
,
Neises
,
T. N.
,
Wagner
,
M. N.
,
Ferguson
,
T.
,
Gilman
,
P.
, and
Janzou
,
S.
,
2014
,
System Advisor Model, SAM 2014.1.14: General description
,
NREL/TP, 6A20-61019
,
National Renewable Energy Laboratory
,
Golden, CO
.
19.
Caliot
,
C.
,
Benoit
,
H.
,
Guillot
,
E.
,
Sans
,
J.-L.
,
Ferriere
,
A.
,
Flamant
,
G.
,
Coustet
,
C.
, and
Piaud
,
B.
,
2015
, “
Validation of a Monte Carlo Integral Formulation Applied to Solar Facility Simulations and Use of Sensitivities
,”
ASME J. Solar Energy Eng.
,
137
(
2
), p.
021019
.
20.
Scott
,
P. A.
,
Alonso
,
A. d. l. C. C.
,
Hinkley
,
J. T. C.
, and
Pye
,
J. A.
,
2017
, “
SolarTherm: A Flexible Modelica-Based Simulator for CSP Systems
,”
AIP. Conf. Proc.
,
1850
(
160026
), pp.
1
8
.
21.
Richter
,
P.
,
Heiming
,
G.
,
Lukas
,
N.
, and
Frank
,
M.
,
2018
, “
SunFlower: A New Solar Tower Simulation Method for Use in Field Layout Optimization
,”
AIP. Conf. Proc.
,
2033
(
210015
), pp.
1
9
.
22.
Wang
,
Y.
,
Potter
,
D.
,
Asselineau
,
C.-A.
,
Corsi
,
C.
,
Wagner
,
M.
,
Caliot
,
C.
,
Piaud
,
B.
,
Blanco
,
M.
,
Kim
,
J.-S.
, and
Pye
,
J.
,
2020
, “
Verification of Optical Modelling of Sunshape and Surface Slope Error for Concentrating Solar Power Systems
,”
Sol. Energy.
,
195
, pp.
461
474
.
23.
Belhomme
,
B.
,
Pitz-Paal
,
R.
,
Schwarzbözl
,
P.
, and
Ulmer
,
S.
,
2009
, “
A New Fast Ray Tracing Tool for High-Precision Simulation of Heliostat Fields
,”
ASME J. Solar Energy Eng.
,
131
(
3
), p.
031002
.
24.
Gebreiter
,
D.
,
Weinrebe
,
G.
,
Wöhrbach
,
M.
,
Arbes
,
F.
,
Gross
,
F.
, and
Landman
,
W.
,
2019
, “
SbpRAY—A Fast and Versatile Tool for the Simulation of Large Scale CSP Plants
,”
24th SolarPACES Conference
,
Oct. 2–5
,
Casablanca, Morocco
, pp.
1
10
,
AIP Conference Proceedings, 2126(170004)
.
25.
Asselineau
,
C.-A.
,
Zapata
,
J.
, and
Pye
,
J.
,
2015
, “
Integration of Monte-Carlo Ray Tracing With a Stochastic Optimisation Method: Application to the Design of Solar Receiver Geometry
,”
Opt. Express
,
23
(
11
), p.
A437
.
26.
Grigoriev
,
V.
,
Corsi
,
C.
, and
Blanco
,
M.
,
2016
, “
Fourier Sampling of Sun Path for Applications in Solar Energy.
,”
21st SolarPACES Conference
,
Oct. 13–16
,
Cape Town, South Africa
, pp.
1
8
,
AIP Conference Proceedings, 1734(020008)
.
27.
Ineichen
,
P.
,
2008
, “
A Broadband Simplified Version of the Solis Clear Sky Model
,”
Sol. Energy.
,
82
(
8
), pp.
758
762
.
28.
Blanco
,
M.
,
Constantinou
,
M.
,
Corsi
,
C.
,
Grigoriev
,
V.
,
Milidonis
,
K.
,
Panagiotou
,
C. F.
,
Papanicolas
,
C. N.
, and
Pye
,
J.
,
2019
, “
FluxTracer: A Ray Tracer Postprocessor to Assist in the Design and Optimization of Solar Concentrators and Receivers
,”
ASME J. Solar Energy Eng.
,
141
(
2
), p.
021015
.
29.
Ahrens
,
J. L. A.
,
Geveci
,
B.
, and
Law
,
C.
,
2005
, “ParaView: An End-User Tool for Large-Data Visualization,”
Visualization Handbook
,
Hansen
,
C. D.
, and
Johnson
,
C. R. B. T. V. H
, eds.,
Butterworth-Heinemann
,
Burlington
, pp.
717
731
.
30.
Coventry
,
J.
,
Arjomandi
,
M.
,
Barry
,
J.
,
Blanco
,
M.
,
Burgess
,
G.
,
Campbell
,
J.
,
Connor
,
P.
,
Emes
,
M.
,
Fairman
,
P.
,
Farrant
,
D.
,
Ghanadi
,
F.
,
Grigoriev
,
V.
,
Hall
,
C.
,
Koltun
,
P.
,
Lewis
,
D.
,
Martin
,
S.
,
Nathan
,
G.
,
Pye
,
J.
,
Qiu
,
A.
,
Stuart
,
W.
,
Tang
,
Y.
,
Venn
,
F.
, and
Yu
,
J.
,
2016
, “
Development of the ASTRI Heliostat
,”
21st SolarPACES Conference
,
Oct. 13–16
,
Cape Town, South Africa
, pp.
1
8
,
AIP Conference Proceedings, 1734(020005)
.
31.
Buie
,
D.
,
Monger
,
A. G.
, and
Dey
,
C. J.
,
2003
, “
Sunshape Distributions for Terrestrial Solar Simulations
,”
Sol. Energy.
,
74
(
2
), pp.
113
122
.
32.
Buie
,
D.
,
Dey
,
C. J.
, and
Bosi
,
S.
,
2003
, “
The Effective Size of the Solar Cone for Solar Concentrating Systems
,”
Sol. Energy.
,
74
(
5
), pp.
417
427
.
You do not currently have access to this content.