Abstract

A seven-rod/seven-TEM00 mode beam Fresnel lens solar laser pumping approach is here proposed. The Fresnel lens with 4.0 m2 collection area was used as the primary solar concentrator to pump seven 2.5 mm diameter, 15 mm length Nd:YAG rods within a conical pump cavity through a secondary fused silica aspheric concentrator. Within the pump cavity, solar pump rays not completely absorbed by one of the seven rods were furtherly absorbed by other rods, ensuring hence a high absorption efficiency and avoiding the serious thermal lensing and thermal stress issues associated with classical large rod solar lasers. Seven individual plane-concave large-mode resonators were adopted to enable a good overlap between solar pump mode and TEM00 laser oscillating mode. By using both zemax® and lascad® software, the maximum total TEM00 mode solar laser power of 54.65 W was numerically calculated by optimizing the radius parameter of the Fresnel lens, the diameter of the laser rod, and the radius of curvature of the laser resonator output mirror. TEM00 mode solar laser collection efficiency of 13.66 W/m2 and solar power-to-TEM00 mode laser power conversion efficiency of 1.44% were calculated, representing substantial enhancements of 4.66 times and 4.38 times, respectively, as compared with previous experimental records of the TEM00 mode solar laser pumped through a Fresnel lens with 0.785 m2 collection area. The feasibility of TEM00 mode solar laser power delivery by hollow-core photonic crystal fibers was finally studied.

References

1.
Lando
,
M.
,
Kagan
,
J. A.
,
Shimony
,
Y.
,
Kalisky
,
Y. Y.
,
Noter
,
Y.
,
Yogev
,
A.
,
Rotman
,
S. R.
, and
Rosenwaks
,
S.
,
1997
, “
Solar-Pumped Solid State Laser Program
,”
10th Meeting on Optical Engineering in Israel
,
Jerusalem, Israel
,
Sept. 22
,
I.
Shladov
, and
S. R.
Rotman
, eds.,
SPIE
, pp.
196
201
.
2.
Hemmati
,
H.
,
Biswas
,
A.
, and
Djordjevic
,
I. B.
,
2011
, “
Deep-Space Optical Communications: Future Perspectives and Applications
,”
Proc. IEEE
,
99
(
11
), pp.
2020
2039
.
3.
Young
,
R. J. D.
,
Walberg
,
G. D.
,
Conway
,
E. J.
, and
Jones
,
L. W.
,
1983
, “
A NASA High-Power Space-Based Laser Research and Applications Program
,” IV. Ser. NASA SP-464. https://ntrs.nasa.gov/citations/19830018929, Document ID 19830018929.
4.
Vasile
,
M.
, and
Maddock
,
C. A.
,
2012
, “
Design of a Formation of Solar Pumped Lasers for Asteroid Deflection
,”
Adv. Space Res.
,
50
(
7
), pp.
891
905
.
5.
Yabe
,
T.
,
Uchida
,
S.
,
Ikuta
,
K.
,
Yoshida
,
K.
,
Baasandash
,
C.
,
Mohamed
,
M. S.
,
Sakurai
,
Y.
,
Ogata
,
Y.
,
Tuji
,
M.
,
Mori
,
Y.
,
Satoh
,
Y.
,
Ohkubo
,
T.
,
Murahara
,
M.
,
Ikesue
,
A.
,
Nakatsuka
,
M.
,
Saiki
,
T.
,
Motokoshi
,
S.
, and
Yamanaka
,
C.
,
2006
, “
Demonstrated Fossil-Fuel-Free Energy Cycle Using Magnesium and Laser
,”
Appl. Phys. Lett.
,
89
(
26
), p.
261107
.
6.
Graydon
,
O.
,
2007
, “
A Sunny Solution
,”
Nat. Photonics
,
1
(
9
), pp.
495
496
.
7.
Oliveira
,
M.
,
Liang
,
D.
,
Almeida
,
J.
,
Vistas
,
C. R.
,
Gonçalves
,
F.
, and
Martins
,
R.
,
2016
, “
A Path to Renewable Mg Reduction From MgO by a Continuous-Wave Cr:Nd:YAG Ceramic Solar Laser
,”
Sol. Energy Mater. Sol. Cells
,
155
, pp.
430
435
.
8.
Young
,
C. G.
,
1966
, “
A Sun-Pumped CW One-Watt Laser
,”
Appl. Opt.
,
5
(
6
), pp.
993
997
.
9.
Arashi
,
H.
,
Oka
,
Y.
,
Sasahara
,
N.
,
Kaimai
,
A.
, and
Ishigame
,
M.
,
1984
, “
A Solar-Pumped CW 18 W Nd:YAG Laser
,”
Jpn. J. Appl. Phys.
,
23
(
Part 1, No. 8
), pp.
1051
1053
.
10.
Weksler
,
M.
, and
Shwartz
,
J.
,
1988
, “
Solar-Pumped Solid-State Lasers
,”
IEEE J. Quantum Electron.
,
24
(
6
), pp.
1222
1228
.
11.
Lando
,
M.
,
Kagan
,
J.
,
Linyekin
,
B.
, and
Dobrusin
,
V.
,
2003
, “
A Solar-Pumped Nd:YAG Laser in the High Collection Efficiency Regime
,”
Opt. Commun.
,
222
(
1–6
), pp.
371
381
.
12.
Yabe
,
T.
,
Ohkubo
,
T.
,
Uchida
,
S.
,
Yoshida
,
K.
,
Nakatsuka
,
M.
,
Funatsu
,
T.
,
Mabuti
,
A.
,
Oyama
,
A.
,
Nakagawa
,
K.
,
Oishi
,
T.
,
Daito
,
K.
,
Behgol
,
B.
,
Nakayama
,
Y.
,
Yoshida
,
M.
,
Motokoshi
,
S.
,
Sato
,
Y.
, and
Baasandash
,
C.
,
2007
, “
High-Efficiency and Economical Solar-Energy-Pumped Laser With Fresnel Lens and Chromium Codoped Laser Medium
,”
Appl. Phys. Lett.
,
90
(
26
), p.
261120
.
13.
Liang
,
D.
, and
Almeida
,
J.
,
2011
, “
Highly Efficient Solar-Pumped Nd:YAG Laser
,”
Opt. Express
,
19
(
27
), p.
26399
.
14.
Dinh
,
T. H.
,
Ohkubo
,
T.
,
Yabe
,
T.
, and
Kuboyama
,
H.
,
2012
, “
120 Watt Continuous Wave Solar-Pumped Laser With a Liquid Light-Guide Lens and an Nd:YAG Rod
,”
Opt. Lett.
,
37
(
13
), pp.
2670
2672
.
15.
Liang
,
D.
,
Vistas
,
C. R.
,
Tibúrcio
,
B. D.
, and
Almeida
,
J.
,
2018
, “
Solar-Pumped Cr:Nd:YAG Ceramic Laser With 6.7% Slope Efficiency
,”
Sol. Energy Mater. Sol. Cells
,
185
, pp.
75
79
.
16.
Liang
,
D.
, and
Almeida
,
J.
,
2013
, “
Solar-Pumped TEM00 Mode Nd:YAG Laser
,”
Opt. Express
,
21
(
21
), p.
25107
.
17.
Liang
,
D.
,
Almeida
,
J.
,
Vistas
,
C. R.
, and
Guillot
,
E.
,
2017
, “
Solar-Pumped Nd:YAG Laser With 31.5 W/m2 Multimode and 7.9 W/m2 TEM00-Mode Collection Efficiencies
,”
Sol. Energy Mater. Sol. Cells
,
159
, pp.
435
439
.
18.
Guan
,
Z.
,
Zhao
,
C.
,
Li
,
J.
,
He
,
D.
, and
Zhang
,
H.
,
2018
, “
32.1 W/m2 Continuous Wave Solar-Pumped Laser With a Bonding Nd:YAG/YAG Rod and a Fresnel Lens
,”
Opt. Laser Technol.
,
107
, pp.
158
161
.
19.
Strite
,
T.
,
Gusenko
,
A.
,
Grupp
,
M.
, and
Hoult
,
T.
,
2016
, “
Fiber Lasers: Multiple Laser Beam Materials Processing | Laser Focus World
,” Laser Focus World, https://www.laserfocusworld.com/lasers-sources/article/16547084/fiber-lasers-multiple-laser-beam-materials-processing
20.
Liang
,
D.
,
Almeida
,
J.
,
Garcia
,
D.
,
Tibúrcio
,
B. D.
,
Guillot
,
E.
, and
Vistas
,
C. R.
,
2020
, “
Simultaneous Solar Laser Emissions From Three Nd:YAG Rods Within a Single Pump Cavity
,”
Sol. Energy
,
199
, pp.
192
197
.
21.
Eifel
,
S.
, and
Holtkamp
,
J.
,
2013
, “
Multi-Beam Technology Boosts Cost Efficiency | Industrial Laser Solutions
,” Industrial Laser Solutions, https://www.industrial-lasers.com/micromachining/article/16485583/multibeam-technology-boosts-cost-efficiency
22.
Gillner
,
A.
,
Finger
,
J.
,
Gretzki
,
P.
,
Niessen
,
M.
,
Bartels
,
T.
, and
Reininghaus
,
M.
,
2019
, “
High Power Laser Processing With Ultrafast and Multi-Parallel Beams
,”
J. Laser Micro/Nanoeng.
,
14
(
2
), pp.
129
137
.
23.
Olsen
,
F. O.
,
Hansen
,
K. S.
, and
Nielsen
,
J. S.
,
2009
, “
Multibeam Fiber Laser Cutting
,”
J. Laser Appl.
,
21
(
3
), pp.
133
138
.
24.
Morace
,
A.
,
Iwata
,
N.
,
Sentoku
,
Y.
,
Mima
,
K.
,
Arikawa
,
Y.
,
Yogo
,
A.
,
Andreev
,
A.
,
Tosaki
,
S.
,
Vaisseau
,
X.
,
Abe
,
Y.
,
Kojima
,
S.
,
Sakata
,
S.
,
Hata
,
M.
,
Lee
,
S.
,
Matsuo
,
K.
,
Kamitsukasa
,
N.
,
Norimatsu
,
T.
,
Kawanaka
,
J.
,
Tokita
,
S.
,
Miyanaga
,
N.
,
Shiraga
,
H.
,
Sakawa
,
Y.
,
Nakai
,
M.
,
Nishimura
,
H.
,
Azechi
,
H.
,
Fujioka
,
S.
, and
Kodama
,
R.
,
2019
, “
Enhancing Laser Beam Performance by Interfering Intense Laser Beamlets
,”
Nat. Commun.
,
10
(
1
), pp.
1
9
.
25.
ASTM Standard G173-03
,
2012
,
Standard Tables for Reference Solar Spectral Irradiances: Direct Normal and Hemispherical on 37 Tilted Surface
,
ASTM International
,
West Conshohocken, PA
.
26.
Zhao
,
B.
,
Zhao
,
C.
,
He
,
J.
, and
Yang
,
S.
,
2007
, “
The Study of Active Medium for Solar-Pumped Solid-State Lasers
,”
Acta Opt. Sin.
,
27
, pp.
1797
1801
. http://en.cnki.com.cn/Article_en/CJFDTOTAL-GXXB200710016.htm
27.
Thorlabs
,
2021
, LMA-PM-10 – ESM Large-Mode-Area PM Photonic Crystal Fiber. https://www.thorlabs.com/thorproduct.cfm?partnumber=LMA-PM-10
28.
Lei
,
C.
,
Gu
,
Y.
,
Chen
,
Z.
,
Wang
,
Z.
,
Zhou
,
P.
,
Ma
,
Y.
,
Xiao
,
H.
,
Leng
,
J.
,
Wang
,
X.
,
Hou
,
J.
,
Xu
,
X.
,
Chen
,
J.
, and
Liu
,
Z.
,
2018
, “
Incoherent Beam Combining of Fiber Lasers by an All-Fiber 7 × 1 Signal Combiner at a Power Level of 14 kW
,”
Opt. Express
,
26
(
8
), pp.
10421
10427
.
29.
Vistas
,
C. R.
,
Liang
,
D.
,
Garcia
,
D.
,
Almeida
,
J.
,
Tibúrcio
,
B. D.
, and
Guillot
,
E.
,
2020
, “
Ce:Nd:YAG Continuous-Wave Solar-Pumped Laser
,”
Optik
,
207
, p.
163795
.
30.
Reusswig
,
P. D.
,
Nechayev
,
S.
,
Scherer
,
J. M.
,
Hwang
,
G. W.
,
Bawendi
,
M. G.
,
Baldo
,
M. A.
, and
Rotschild
,
C.
,
2015
, “
A Path to Practical Solar Pumped Lasers via Radiative Energy Transfer
,”
Sci. Rep.
,
5
(
1
), p.
14758
.
31.
Smyth
,
C. J. C.
,
Mirkhanov
,
S.
,
Quarterman
,
A. H.
, and
Wilcox
,
K. G.
,
2020
, “
27.5 W/m2 Collection Efficiency Solar Laser Using a Diffuse Scattering Cooling Liquid: Erratum
,”
Appl. Opt.
,
59
(
3
), p.
800
.
You do not currently have access to this content.