The stacking axis locations for twist and taper distributions along the span of a wind turbine blade are optimized to maximize the rotor torque and/or to minimize the thrust. A neural networks (NN)-based model is trained for the torque and thrust values calculated using a computational fluid dynamics (CFD) solver. Once the model is obtained, constrained and unconstrained optimization is conducted. The constraints are the torque or the thrust values of the baseline turbine blade. The baseline blade is selected as the wind turbine blade used in the National Renewable Energy Laboratory (NREL) Phase VI rotor model. The Reynolds averaged Navier–Stokes (RANS) computations are done using the FINE/turbo flow solver developed by NUMECA International. The k-epsilon turbulence model is used to calculate the eddy viscosity. It is observed that achieving the same torque value as the baseline value is possible with about 5% less thrust. Similarly, the torque is increased by about 4.5% while maintaining the baseline thrust value.

References

1.
Sessarego
,
M.
,
Ramos-Garcia
,
N.
,
Yang
,
H.
, and
Shen
,
W. Z.
,
2016
, “
Aerodynamic Wind-Turbine Rotor Design Using Surrogate Modeling and Three-Dimensional Viscous-Inviscid Interaction Technique
,”
Renewable Energy
,
93
, pp.
620
635
.
2.
Dai
,
J. C.
,
Hu
,
Y. P.
,
Liu
,
D. S.
, and
Long
,
X.
,
2011
, “
Aerodynamic Loads Calculation and Analysis for Large Scale Wind Turbine Based on Combining BEM Modified Theory With Dynamic Stall Model
,”
Renewable Energy
,
36
(
3
), pp.
1095
1104
.
3.
Robison
,
D. J.
,
Coton
,
F. N.
,
Galbraith
,
R. A. M. C. D.
, and
Vezza
,
M.
,
1995
, “
Application of a Prescribed Wake Aerodynamic Prediction Scheme to Horizontal Axis Wind Turbines in Axial Flow
,”
Wind Eng.
,
19
(1), pp.
41
51
.https://www.jstor.org/stable/43749564
4.
Ashuri
,
T.
,
Zhang
,
T.
,
Qian
,
D.
, and
Rotea
,
M.
,
2016
, “
Uncertainty Quantification of the Levelized Cost of Energy for the 20 MW Research Wind Turbine Model
,”
AIAA
Paper. No. 2016-1998.
5.
Castillo Capponi
,
P.
,
Ashuri
,
T.
,
Van Bussel
,
G. J. W.
, and
Kallesoe
,
B.
,
2011
, “
A Non-Linear Upscaling Approach for Wind Turbines Blades Based on Stresses
,”
European Wind Energy Conference
, Brussels, Belgium, Mar. 14–17, pp.
1
8
.
6.
Afjeh
,
A. A.
, and
Keith
,
T. G.
,
1986
, “
A Vortex Lifting Line Method for the Analysis of Horizontal Axis Wind Turbines
,”
ASME J. Sol. Energy Eng.
,
108
(
4
), pp.
303
309
.
7.
Ashuri
,
T.
,
Martins
,
J. R. R. A.
,
Zaaijer
,
M. B.
,
van Kuik
,
G. A. M.
,
van Bussel
., and
Gerard
,
J. W.
,
2016
, “
Aeroservoelastic Design Definition of a 20 MW Common Research Wind Turbine Model
,”
Wind Energy
,
19
(
11
), pp.
2071
2087
.
8.
Ning
,
A.
, and
Petch
,
D.
,
2016
, “
Integrated Design of Downwind Land-Based Wind Turbines Using Analytic Gradients
,”
Wind Energy
,
19
(
12
), pp.
2137
2152
.
9.
Dhert
,
T.
,
Ashuri
,
T.
, and
Martins
,
J. R. R. A.
,
2016
, “
Aerodynamic Shape Optimization of Wind Turbine Blades Using a Reynolds-Averaged Navier–Stokes Model and an Adjoint Method
,”
Wind Energy
,
20
(
5
), pp.
909
926
.
10.
Chattot
,
J.-J.
,
2003
, “
Optimization of Wind Turbines Using Helicoidal Vortex Model
,”
ASME J. Sol. Energy Eng.
,
125
(
4
), pp.
418
424
.
11.
Wijnen
,
M.
, and
Chattot
,
J.-J.
,
2011
, “
Multi-Point Optimization of Wind Turbine Blades Using Helicoidal Vortex Model
,”
Computational Fluid Dynamics 2010
,
A.
Kuzmin
, ed.,
Springer
,
Berlin
, pp.
235
240
.
12.
Johansen
,
J.
, and
Sørensen
,
N. N.
,
2006
, “
Aerodynamic Investigation of Winglets on Wind Turbine Blades Using CFD
,” Risø National Laboratory, Roskilde, Denmark, Report No.
Risø-R-1543(EN)
.http://orbit.dtu.dk/en/publications/aerodynamic-investigation-of-winglets-on-wind-turbine-blades-using-cfd(81167298-0483-4d7a-8d25-f5aa47130927).html
13.
Elfarra
,
M. A.
,
Uzol
,
N. S.
, and
Akmandor
,
I. S.
,
2013
, “
NREL VI Rotor Blade: Numerical Investigation and Winglet Design and Optimization Using CFD
,”
Wind Energy
,
17
(
4
), pp.
605
626
.
14.
Elfarra
,
M. A.
,
Uzol
,
N. S.
, and
Akmandor
,
I. S.
,
2015
, “
Investigations on Blade Tip Tilting for HAWT Rotor Blades Using CFD
,”
Int. J. Green Energy
,
12
(
2
), pp.
125
138
.
15.
Economon
,
T. D.
,
Palacios
,
F.
, and
Alonso
,
J. J.
,
2013
, “
A Viscous Continuous Adjoint Approach for the Design of Rotating Engineering Applications
,”
AIAA
Paper. No. 2013-2580.
16.
Amano
,
R. S.
, and
Malloy
,
R. J.
,
2009
, “
Aerodynamic Comparison of Straight Edge and Swept Edge Wind Turbine Blade
,”
AIAA
Paper. No. 2009-1208.
17.
Larwood
,
S.
,
van Dam
,
C. P.
, and
Schow
,
D.
,
2014
, “
Design Studies of Swept Wind Turbine Blades
,”
Renewable Energy
,
71
, pp.
563
571
.
18.
Suzuki
,
K.
,
Schmitz
,
S.
, and
Chattot
,
J.-J.
,
2010
, “
Analysis of a Swept Wind Turbine Blade Using a Hybrid Navier–Stokes/Vortex-Panel Model
,”
Sixth International Conference on Computational Fluid Dynamics
(
ICCFD6
), St Petersburg, Russia, July 12–16, pp.
213
218
.https://pennstate.pure.elsevier.com/en/publications/analysis-of-a-swept-wind-turbine-blade-using-a-hybrid-navier-stok
19.
Zuo
,
H. M.
,
Liu
,
C.
,
Yang
,
H.
, and
Wang
,
F.
,
2016
, “
Numerical Study on the Effect of Swept Blade on the Aerodynamic Performance of Wind Turbine at High Tip Speed Ratio
,”
J. Phys.: Conf. Ser.
,
753
, p.
102010
.
20.
Shen
,
X.
,
Yang
,
H.
,
Chen
,
J.
,
Zhu
,
X.
, and
Du
,
Z.
,
2016
, “
Aerodynamic Shape Optimization of Non-Straight Small Wind Turbine Blades
,”
Energy Convers. Manage.
,
119
, pp.
266
278
.
21.
Vesel
,
R. W.
, Jr
, and
McNamara
,
J. J.
,
2014
, “
Performance Enhancement and Load Reduction of a 5 MW Wind Turbine Blade
,”
Renewable Energy
,
66
, pp.
391
401
.
22.
Chattot
,
J. J.
,
2009
, “
Effects of Blade Tip Modifications on Wind Turbine Performance Using Vortex Model
,”
Comput. Fluids
,
38
(
7
), pp.
1405
1410
.
23.
Shen
,
X.
,
Chen
,
J.-G.
,
Zhu
,
X.-C.
,
Liu
,
P.-Y.
, and
Du
,
Z.-H.
,
2015
, “
Multi-Objective Optimization of Wind Turbine Blades Using Lifting Surface Method
,”
Energy
,
90
, pp.
1111
1121
.
24.
Amano
,
R. S.
, and
Malloy
,
R. J.
,
2008
, “
Aerodynamic Comparison of Straight Edge and Swept Edge Wind Turbine Blade
,”
ASME
Paper No. IMECE2008-69285
.
25.
Verelst
, D. R
.
, and
Larsen
,
T. J.
,
2010
, “
Load Consequences When Sweeping Blades—A Case Study of a 5 MW Pitch Controlled Wind Turbine
,” Risø DTU National Laboratory for Sustainable Energy, Roskilde, Denmark, Report No.
Risø-R-1724(EN)
.http://orbit.dtu.dk/en/publications/load-consequences-when-sweeping-blades--a-case-study-of-a-5-mw-pitch-controlled-wind-turbine(d0774b4a-ef6a-4fb4-bbd6-0120c36751af).html
26.
Lee
,
K.-H.
,
Kim
,
K.-H.
,
Lee
,
D.-H.
,
Lee
,
K.-T.
, and
Park
,
J.-P.
,
2010
, “
Two-Step Optimization for Wind Turbine Blade With Probability Approach
,”
ASME J. Sol. Energy Eng.
,
132
(
3
), p.
034503
.
27.
Bourguet
,
R.
,
Martinat
,
G.
,
Harran
,
G.
, and
Braza
,
M.
,
2007
, “
Aerodynamic Multi-Criteria Shape Optimization of VAWT Blade Profile by Viscous Approach
,”
Wind Energy
,
J.
Peinke
,
P.
Schaumann
, and
S.
Barth
, eds.,
Springer
,
Berlin
, pp.
215
219
.
28.
Sun
,
H.
,
2011
, “
Wind Turbine Airfoil Design Using Response Surface Method
,”
J. Mech. Sci. Technol.
,
25
(
5
), pp.
1335
1340
.
29.
Han
,
Z.
,
Zhang
,
K.
,
Song
,
W.
, and
Liu
,
J.
,
2013
, “
Surrogate-Based Aerodynamic Shape Optimization With Application to Wind Turbine Airfoils
,”
AIAA
Paper. No. 2013-1108.
30.
Ribeiro
,
A.
,
Awruch
,
A.
, and
Gomes
,
H.
,
2012
, “
An Airfoil Optimization Technique for Wind Turbines
,”
Appl. Math. Model.
,
36
(
10
), pp.
4898
4907
.
31.
NUMECA International
,
2017
, “
FINETM/Turbo Software Package
,” ver.11.2rc, User Manual, Numeca, Brussels, Belgium.
32.
NUMECA International,
2017
, “
IGGTM/AutoGrid5TM Software Package
,” ver.11.2rc, User Manual, Numeca, Brussels, Belgium.
33.
Hand
,
M.
,
Simms
,
D.
,
Fingersh
,
L.
,
Jager
,
D.
,
Cotrell
,
J.
,
Schreck
,
S.
, and
Larwood
,
S.
,
2001
, “
Unsteady Aerodynamics Experiment Phase VI: Wind Tunnel Test Configurations and Available Data Campaigns
,” National Renewable Energy Laboratory, Golden, CO, Report No.
NREL/TP 500-29955
.https://www.nrel.gov/docs/fy02osti/29955.pdf
34.
Giguere
,
P.
, and
Selig
,
M. S.
,
1999
, “
Design of a Tapered and Twisted Blade for the NREL Combined Experiment Rotor
,” National Renewable Energy Laboratory, Golden, CO, Report No.
NREL/SR-500-26173
.https://www.nrel.gov/docs/fy99osti/26173.pdf
35.
Hagan
,
M. T.
, and
Menhaj
,
M. B.
,
1994
, “
Training Feed-Forward Networks With the Marquardt Algorithm
,”
IEEE Trans. Neural Networks
,
5
(
6
), pp.
989
993
.
36.
Vanderplaats
,
G. N.
,
2001
, “
Numerical Optimization Techniques for Engineering Design
,” 3rd ed., Vanderplaats Research and Development, Colorado Springs, CO, Chap. 5.
37.
Wilde,
D. J.
,
1964
,
Optimum Seeking Methods
, 1st ed.,
Prentice Hall
, Englewood Cliffs, NJ.
You do not currently have access to this content.