Designing blade geometry as a multidisciplinary optimization presents important challenges due to the increment in the number of design variables and computational cost of calculating the constraints and objective function. Blades have an important impact on loads because they capture the kinetic energy in wind and transfer it to the rest of the wind turbine components. Thus, consideration of the fatigue response is necessary in the optimization problem. However, the calculation of the damage equivalent loads (DELs) implies time-consuming simulations that restrict the number of design variables due to the increment of the search space. This article proposes a frequency domain method to estimate the fatigue response, which produces an advantage in terms of computational cost. The method is based on wind turbine model linearization by means of an aero-elastic code and the subsequent calculation of a frequency response function (FRF), which serves to estimate the response of the wind turbine. The Dirlik method is then applied to infer the damage equivalent loads. This process, which is useful for variables that have a stochastic nature, provides rapid approximate prediction of the fatigue response. An alternative estimation is proposed for loads subjected to an important periodic component. The results show that the method is useful in the initial stages of design.

References

1.
Drela
,
M.
,
1998
, “
Pros and Cons of Airfoil Optimization
,”
Frontiers Computational Fluid Dynamics
, World Scientific, Singapore, pp.
363
381
.
2.
Fuglsang
,
P.
, and
Madsen
,
H. A.
,
1999
, “
Optimization Method for Wind Turbine Rotors
,”
J. Wind Eng. Ind. Aerodyn.
,
80
(
1–2
), pp.
191
206
.
3.
Lee
,
K.-H.
,
Kim
,
K.-H.
,
Lee
,
D.-H.
,
Lee
,
K.-T.
, and
Park
,
J.-P.
,
2010
, “
Two-Step Optimization for Wind Turbine Blade With Probability Approach
,”
ASME J. Sol. Energy Eng.
,
132
(
3
), p.
034503
.
4.
Buckley
,
H. P.
,
Zhou
,
B. Y.
, and
Zingg
,
D. W.
,
2010
, “
Airfoil Optimization Using Practical Aerodynamic Design Requirements
,”
J. Aircr.
,
47
(
5
), pp.
1707
1719
.
5.
Korte
,
J.
,
Weston
,
R.
, and
Zang
,
T.
,
1997
, “
Multidisciplinary Optimization Methods For Preliminary Design
,” NASA Langley Technical Report Server, Technical Report No.
AIAA
Paper -94-4325-CP.
6.
Bottasso
,
C. L.
,
Campagnolo
,
F.
, and
Croce
,
A.
,
2012
, “
Multi-Disciplinary Constrained Optimization of Wind Turbines
,”
Multibody Syst. Dyn.
,
27
(
1
), pp.
21
53
.
7.
Ashuri
,
T.
,
Zaaijer
,
M. B.
,
Martins
,
J. R. R. A.
,
van Bussel
,
G. J. W.
, and
van Kuik
,
G. A. M.
,
2014
, “
Multidisciplinary Design Optimization of Offshore Wind Turbines for Minimum Levelized Cost of Energy
,”
Renewable Energy
,
68
(
C
), pp.
893
905
.
8.
Ning
,
A. S.
,
Damiani
,
R.
, and
Moriarty
,
P. J.
,
2014
, “
Objectives and Constraints for Wind Turbine Optimization
,”
ASME J. Sol. Energy Eng.
,
136
(
4
), p.
041010
.
9.
Toft
,
H. S.
,
Svenningsen
,
L.
,
Moser
,
W.
,
Sørensen
,
J. D.
, and
Thøgersen
,
M. L.
,
2016
, “
Wind Climate Parameters for Wind Turbine Fatigue Load Assessment
,”
ASME J. Sol. Energy Eng.
,
138
(
3
), p.
031010
.
10.
Passipoularidis
,
V.
, and
Brøndsted
,
P.
,
2010
, “
Fatigue Evaluation Algorithms: Review
,” Technical University of Denmark, Risø National Laboratory for Sustainable Energy, Roskilde, Denmark.
11.
Bellman
,
R.
,
1957
,
Dynamic Programming
,
Princeton University Press
, Princeton, NJ.
12.
Chen
,
S.
,
Montgomery
,
J.
, and
Bolufe-Rohler
,
A.
,
2015
, “
Measuring the Curse of Dimensionality and Its Effects on Particle Swarm Optimization and Differential Evolution
,”
Appl. Intell.
,
42
(
3
), pp.
514
526
.
13.
Sørensen
,
P.
,
Larsen
,
G. C.
, and
Christensen
,
C. J.
,
1995
, “
A Complex Frequency Domain Model of Wind Turbine Structures
,”
ASME J. Sol. Energy Eng.
,
117
(
4
), pp.
311
317
.
14.
Halfpenny
,
A.
,
1998
, “
Dynamics Both On and Offshore Wind Turbines Frequency Domain
,” University College London, London, UK.
15.
Ziegler
,
L.
,
Voormeeren
,
S.
,
Schafhirt
,
S.
, and
Muskulus
,
M.
,
2015
, “
Sensitivity Wave Fatigue Loads Offshore Wind Turbines Varying Site Conditions
,”
Energy Proc.
,
80
, pp.
193
200
.
16.
van der Tempel
,
J.
,
2010
, “
Design of Support Structures for Offshore Wind Turbines
,” Technische Universiteit Delft, Delft, The Netherlands.
17.
Dirlik
,
T.
,
1985
, “
Application of Computers in Fatigue Analysis
,” University of Warwick, Coventry, UK.
18.
Nocedal
,
J.
, and
Wright
,
S. J.
,
2006
,
Numerical Optimization
(Series in Operations Research Financial Engineering),
Springer-Verlag
,
New York
.
19.
Han
,
X.
,
2011
, “
An Evolutionary Geometry Parametrization for Aerodynamic Shape Optimization
,” University of Toronto, Toronto, ON, Canada.
20.
Fuglsang
,
P.
, and
Dahl
,
K. S.
,
1998
, “
Design of the Wind Turbine Airfoil Family RISØ-A-XX
,” Technical University of Denmark, Risø National Laboratory for Sustainable Energy, Roskilde, Denmark.
21.
Obayashi
,
S.
,
Tsukahara
,
T.
, and
Nakamura
,
T.
,
2000
, “
Multiobjective Genetic Algorithm Applied to Aerodynamic Design Cascade Airfoils
,”
IEEE Trans. Ind. Electron.
,
47
(
1
), pp.
211
216
.
22.
Tegen
,
P. S.
,
Lantz
,
E.
,
Hand
,
M.
,
Maples
,
B.
,
Smith
,
A.
, and
Schwabe
,
P.
,
2013
, “
2011 Cost Wind Energy Review
,” National Renewable Energy Laboratory, Golden, CO.
23.
Griffith
,
D. T.
, and
Johanns
,
W.
,
2013
, “
Carbon Design Studies for Large Blades: Performance and Cost Tradeoffs for the Sandia 100-Meter Wind Turbine Blade
,”
AIAA
Paper No. 2013-1554.
24.
IEC
,
2005
, “
Wind Turbines—Part 1: Design Requirements
,” International Electrotechnical Commission, Geneva, Switzerland, Standard No.
IEC 61400-1
.
25.
Garrad and Hassan & Partners,
2012
, “
Bladed User Manual
,” Garrad Hassan & Partners Ltd., Bristol, UK.
26.
Jonkman, J., 2015, “
NWTC Information Portal (FAST)
,” National Renewable Energy Laboratory, Golden, CO, accessed May 11, 2016, https://nwtc.nrel.gov/FAST
27.
Munteanu
,
I.
,
2008
, “
Wind Turbine Control Systems: Principles, Modelling and Gain Scheduling Design
,”
Int. J. Robust Nonlinear Control
,
18
(
7
), pp.
796
797
.
28.
Burlibasa
,
A.
, and
Ceanga
,
E.
,
2013
, “
Rotationally Sampled Spectrum Approach for Simulation of Wind Speed Turbulence in Large Wind Turbines
,”
Appl. Energy
,
111
, pp.
624
635
.
29.
Ostergaard
,
K. Z.
,
Brath
,
P.
, and
Stoustrup
,
J.
,
2007
, “
Estimation of Effective Wind Speed
,”
J. Phys.: Conf. Ser.
,
75
(
1
), p.
012082
.
30.
Simley
,
E.
, and
Pao
,
L.
,
2013
, “
Correlation Between Rotating LIDAR Measurements and Blade Effective Wind Speed
,”
AIAA
Paper No. 2013-0749.
31.
Burton
,
T.
,
2001
,
Windenergy Handbook
,
Wiley
, Chichester, UK.
32.
Larsen
,
C. E.
, and
Irvine
,
T.
,
2015
, “
Review of Spectral Methods for Variable Amplitude Fatigue Prediction and New Results
,”
Proc. Eng.
,
101
, pp.
243
250
.
33.
Ragan
,
P.
, and
Manuel
,
L.
,
2007
, “
Comparing Estimates of Wind Turbine Fatigue Loads Using Time-Domain Spectral Methods
,”
Wind Eng.
,
31
(
2
), pp.
83
99
.
34.
Mrsnik
,
M.
,
Boltezar
,
M.
, and
Slavic
,
J.
,
2013
, “
Frequency-Domain Methods for a Vibration Fatigue Life Estimation: Application to Real Data
,”
Int. J. Fatigue
,
47
, pp.
8
17
.
35.
Zahle, F., Tibaldi, C., Verelst, D. R., Bitche, R., and Bak, C.,
2015
, “
Aero-Elastic Optimization of a 10 MW Wind Turbine
,”
AIAA
Paper No. 2015-0491.
36.
Bortolotti, P., Adolphs, G., and Bottasso, C. L.,
2016
, “
A Methodology to Guide the Selection of Composite Materials in a Wind Turbine Rotor Blade Design Process
,”
J. Phys.: Conf. Ser.
,
753
(6), p. 062001.
37.
Saltelli
,
A.
,
2004
,
Sensitivity Analysis Practice: A Guide to Assessing Scientific Models
,
Wiley
, Hoboken, NJ.
38.
MATLAB,
2015
, “
MATLAB. 8.5.0.197613 (R2015a)
,” The MathWorks Inc., Natick, MA.
39.
Efron
,
B.
,
1982
, “
The Jackknife, the Bootstrap and Other Resampling Plans
,” Society for Industrial and Applied Mathematics, Stanford, CA.
40.
Drela
,
M.
,
1989
, “
XFOIL: An Analysis and Design System for Low Reynolds Number Airfoils
,”
Conference on Low Reynolds Number Aerodynamics
, Notre Dame, IN, June 5–7.
41.
Bir
,
G.
, and
Damiani
,
R.
, 2004, “
Pre-Processor for Computing Composite Blade Properties
,” Computer Software, National Renewable Energy Laboratory, Golden, CO, accessed May 9, 2017, https://nwtc.nrel.gov/PreComp
42.
Boorsma
,
K.
, and
Bulder
,
B. H.
, 2012, “
Silant
,” Computer Software, Energy Research Centre of the Netherlands, Petten, The Netherlands, accessed May 9, 2017, https://www.ecn.nl/
You do not currently have access to this content.