In order to maximize the total power generation of a wind farm, several control strategies based on tilt angle, yaw angle, and cone angle were investigated numerically using computational fluid dynamics (CFD) simulation. The full rotor model (FRM) of 5 MW wind turbine was used to simulate the wake in the wind farm. According to the comparison of different cases' power generations and velocity fields, the result indicates that appropriate strategies based on tilt angle and positive yaw angle have effective improvements on the power output of whole wind farm, but changing cone angle and opposite yaw angle result in negative effects.

References

1.
Hau
,
E.
,
2006
,
Wind Turbines: Fundamentals, Technologies, Application, Economics
,
Springer
,
Oxford, UK
.
2.
Badran
,
O.
,
Abdulhadi
,
E.
, and
Mamlook
,
R.
,
2009
, “
Evaluation of Parameters Affecting Wind Turbine Power Generation
,”
Seventh Asia-Pacific Conference on Wind Engineering
(
7th APCWE
), Taipei, Taiwan, Nov. 8–12.
3.
Tong
,
W.
,
Chowdhury
,
S.
,
Mehmani
,
A.
,
Messac
,
A.
, and
Zhang
,
J.
,
2015
, “
Sensitivity of Wind Farm Output to Wind Conditions, Land Configuration, and Installed Capacity, Under Different Wake Models
,”
ASME J. Mech. Des.
,
137
(
6
), p.
061403
.
4.
Chowdhury
,
S.
,
Zhang
,
J.
,
Messac
,
A.
, and
Castillo
,
L.
,
2013
, “
Optimizing the Arrangement and the Selection of Turbines for Wind Farms Subject to Varying Wind Conditions
,”
Renewable Energy
,
52
, pp.
273
282
.
5.
Chowdhury
,
S.
,
Zhang
,
J.
,
Messac
,
A.
, and
Castillo
,
L.
,
2012
, “
Unrestricted Wind Farm Layout Optimization (UWFLO): Investigating Key Factors Influencing the Maximum Power Generation
,”
Renewable Energy
,
38
(
1
), pp.
16
30
.
6.
Wu
,
Y. T.
, and
Porté-Agel
,
F.
,
2015
, “
Modeling Turbine Wakes and Power Losses Within a Wind Farm Using LES: An Application to the Horns Rev Offshore Wind Farm
,”
Renewable Energy
,
75
, pp.
945
955
.
7.
Vermeer
,
L. J.
,
Sørensen
,
J. N.
, and
Crespo
,
A.
,
2003
, “
Wind Turbine Wake Aerodynamics
,”
Prog. Aerosp. Sci.
,
39
(
6
), pp.
467
510
.
8.
Kim
,
S. H.
,
Shin
,
H. K.
,
Joo
,
Y. C.
, and
Kim
,
K. H.
,
2015
, “
A Study of the Wake Effects on the Wind Characteristics and Fatigue Loads for the Turbines in a Wind Farm
,”
Renewable Energy
,
74
, pp.
536
543
.
9.
Lee
,
S.
,
Churchfield
,
M.
,
Moriarty
,
P.
,
Jonkman
,
J.
, and
Michalakes
,
J.
,
2012
, “
Atmospheric and Wake Turbulence Impacts on Wind Turbine Fatigue Loadings
,”
AIAA
Paper No. 2012-0540.
10.
Johnson
,
K.
, and
Fritsch
,
G.
,
2012
, “
Assessment of Extremum Seeking Control for Wind Farm Energy Production
,”
Wind Eng.
,
36
(
6
), pp.
701
716
.
11.
Marden
,
J. R.
,
Ruben
,
S. D.
, and
Pao
,
L. Y.
,
2012
, “
Surveying Game Theoretic Approaches for Wind Farm Optimization
,”
AIAA
Paper No. 2012-1154.
12.
Jiménez
,
Á.
,
Crespo
,
A.
, and
Migoya
,
E.
,
2010
, “
Application of a LES Technique to Characterize the Wake Deflection of a Wind Turbine in Yaw
,”
Wind Energy
,
13
(
6
), pp.
559
572
.
13.
Wagenaar
,
J. W.
,
Machielse
,
L. A. H.
, and
Schepers
,
J. G.
,
2012
, “
Controlling Wind in ECN's Scaled Wind Farm
,”
Europe Premier Wind Energy Event
(
EWEA 2012
), Copenhagen, Denmark, Apr. 16–19, pp.
685
694
.
14.
Fleming
,
P. A.
,
Gebraad
,
P. M.
,
Lee
,
S.
,
van Wingerden
,
J. W.
,
Johnson
,
K.
,
Churchfield
,
M.
,
Michalakes
,
J.
,
Spalart
,
P.
, and
Moriarty
,
P.
,
2014
, “
Evaluating Techniques for Redirecting Turbine Wakes Using SOWFA
,”
Renewable Energy
,
70
, pp.
211
218
.
15.
Fleming
,
P.
,
Gebraad
,
P.
,
Lee
,
S.
,
van Wingerden
,
J. W.
,
Johnson
,
K.
,
Churchfield
,
M.
,
Michalakes
,
J.
,
Spalart
,
P.
, and
Moriarty
,
P.
,
2013
, “
High-Fidelity Simulation Comparison of Wake Mitigation Control Strategies for a Two-Turbine Case
,”
International Conference on Aerodynamics of Offshore Wind Energy Systems and Wakes
(
ICOWES 2013
), Lyngby, Denmark, June 17–19.
16.
Wilson
,
J. M.
,
Davis
,
C. J.
,
Venayagamoorthy
,
S. K.
, and
Heyliger
,
P. R.
,
2015
, “
Comparisons of Horizontal-Axis Wind Turbine Wake Interaction Models
,”
ASME J. Sol. Energy Eng.
,
137
(
3
), p.
031001
.
17.
Kim
,
T.
,
Oh
,
S.
, and
Yee
,
K.
,
2015
, “
Improved Actuator Surface Method for Wind Turbine Application
,”
Renewable Energy
,
76
, pp.
16
26
.
18.
Barthelmie
,
R. J.
,
Larsen
,
G. C.
,
Frandsen
,
S. T.
,
Folkerts
,
L.
,
Rados
,
K.
,
Pryor
,
S. C.
,
Lange
,
B.
, and
Schepers
,
G.
,
2006
, “
Comparison of Wake Model Simulations With Offshore Wind Turbine Wake Profiles Measured by SODAR
,”
J. Atmos. Oceanic Technol.
,
23
(
7
), pp.
888
901
.
19.
Butterfield
,
S.
,
Musial
,
W.
, and
Scott
,
G.
,
2009
, “
Definition of a 5-MW Reference Wind Turbine for Offshore System Development
,” National Renewable Energy Laboratory, Golden, CO, Technical Report No.
NREL
/TP-500-38060.
20.
Choi
,
N. J.
,
Nam
,
S. H.
,
Jeong
,
J. H.
, and
Kim
,
K. C.
,
2013
, “
Numerical Study on the Horizontal Axis Turbines Arrangement in a Wind Farm: Effect of Separation Distance on the Turbine Aerodynamic Power Output
,”
J. Wind Eng. Ind. Aerodyn.
,
117
, pp.
11
17
.
21.
Son
,
E.
,
Lee
,
S.
,
Hwang
,
B.
, and
Lee
,
S.
,
2014
, “
Characteristics of Turbine Spacing in a Wind Farm Using an Optimal Design Process
,”
Renewable Energy
,
65
, pp.
245
249
.
22.
Fleming
,
P.
,
Gebraad
,
P.
,
van Wingerden
,
J. W.
,
Lee
,
S.
,
Churchfield
,
M.
,
Scholbrock
,
A.
,
Michalakes
,
J.
,
Johnson
,
K.
, and
Moriarty
,
P.
,
2013
, “
The SOWFA Super-Controller: A High-Fidelity Tool for Evaluating Wind Plant Control Approaches
,”
EWEA Annual Meeting
,
Vienna
,
Austria
, Feb. 4–7.
23.
Porté-Agel
,
F.
,
Wu
,
Y. T.
,
Lu
,
H.
, and
Conzemius
,
R. J.
,
2011
, “
Large-Eddy Simulation of Atmospheric Boundary Layer Flow Through Wind Turbines and Wind Farms
,”
J. Wind Eng. Ind. Aerodyn.
,
99
(
4
), pp.
154
168
.
24.
Porté-Agel
,
F.
,
Lu
,
H.
, and
Wu
,
Y. T.
,
2014
, “
Interaction Between Large Wind Farms and the Atmospheric Boundary Layer
,”
Procedia IUTAM
,
10
, pp.
307
318
.
25.
Jonkman
,
J. M.
,
2009
, “
Dynamics of Offshore Floating Wind Turbines—Model Development and Verification
,”
Wind Energy
,
12
(
5
), pp.
459
492
.
26.
Richards
,
P. J.
, and
Hoxey
,
R. P.
,
1993
, “
Appropriate Boundary Conditions for Computational Wind Engineering Models Using the k-ϵ Turbulence Model
,”
J. Wind Eng. Ind. Aerodyn.
,
46
, pp.
145
153
.
27.
Sagol
,
E.
,
Reggio
,
M.
, and
Ilinca
,
A.
,
2013
, “
Issues Concerning Roughness on Wind Turbine Blades
,”
Renewable Sustainable Energy Rev.
,
23
, pp.
514
525
.
28.
El Kasmi
,
A.
, and
Masson
,
C.
,
2008
, “
An Extended k–ε Model for Turbulent Flow Through Horizontal-Axis Wind Turbines
,”
J. Wind Eng. Ind. Aerodyn.
,
96
(
1
), pp.
103
122
.
29.
Cabezón
,
D.
,
Migoya
,
E.
, and
Crespo
,
A.
,
2011
, “
Comparison of Turbulence Models for the Computational Fluid Dynamics Simulation of Wind Turbine Wakes in the Atmospheric Boundary Layer
,”
Wind Energy
,
14
(
7
), pp.
909
921
.
30.
Prospathopoulos
,
J. M.
,
Politis
,
E. S.
,
Rados
,
K. G.
, and
Chaviaropoulos
,
P. K.
,
2011
, “
Evaluation of the Effects of Turbulence Model Enhancements on Wind Turbine Wake Predictions
,”
Wind Energy
,
14
(
2
), pp.
285
300
.
You do not currently have access to this content.