In order to maximize the total power generation of a wind farm, several control strategies based on tilt angle, yaw angle, and cone angle were investigated numerically using computational fluid dynamics (CFD) simulation. The full rotor model (FRM) of 5 MW wind turbine was used to simulate the wake in the wind farm. According to the comparison of different cases' power generations and velocity fields, the result indicates that appropriate strategies based on tilt angle and positive yaw angle have effective improvements on the power output of whole wind farm, but changing cone angle and opposite yaw angle result in negative effects.
Issue Section:
Technical Brief
References
1.
Hau
, E.
, 2006
, Wind Turbines: Fundamentals, Technologies, Application, Economics
, Springer
, Oxford, UK
.2.
Badran
, O.
, Abdulhadi
, E.
, and Mamlook
, R.
, 2009
, “Evaluation of Parameters Affecting Wind Turbine Power Generation
,” Seventh Asia-Pacific Conference on Wind Engineering
(7th APCWE
), Taipei, Taiwan, Nov. 8–12.3.
Tong
, W.
, Chowdhury
, S.
, Mehmani
, A.
, Messac
, A.
, and Zhang
, J.
, 2015
, “Sensitivity of Wind Farm Output to Wind Conditions, Land Configuration, and Installed Capacity, Under Different Wake Models
,” ASME J. Mech. Des.
, 137
(6
), p. 061403
.4.
Chowdhury
, S.
, Zhang
, J.
, Messac
, A.
, and Castillo
, L.
, 2013
, “Optimizing the Arrangement and the Selection of Turbines for Wind Farms Subject to Varying Wind Conditions
,” Renewable Energy
, 52
, pp. 273
–282
.5.
Chowdhury
, S.
, Zhang
, J.
, Messac
, A.
, and Castillo
, L.
, 2012
, “Unrestricted Wind Farm Layout Optimization (UWFLO): Investigating Key Factors Influencing the Maximum Power Generation
,” Renewable Energy
, 38
(1
), pp. 16
–30
.6.
Wu
, Y. T.
, and Porté-Agel
, F.
, 2015
, “Modeling Turbine Wakes and Power Losses Within a Wind Farm Using LES: An Application to the Horns Rev Offshore Wind Farm
,” Renewable Energy
, 75
, pp. 945
–955
.7.
Vermeer
, L. J.
, Sørensen
, J. N.
, and Crespo
, A.
, 2003
, “Wind Turbine Wake Aerodynamics
,” Prog. Aerosp. Sci.
, 39
(6
), pp. 467
–510
.8.
Kim
, S. H.
, Shin
, H. K.
, Joo
, Y. C.
, and Kim
, K. H.
, 2015
, “A Study of the Wake Effects on the Wind Characteristics and Fatigue Loads for the Turbines in a Wind Farm
,” Renewable Energy
, 74
, pp. 536
–543
.9.
Lee
, S.
, Churchfield
, M.
, Moriarty
, P.
, Jonkman
, J.
, and Michalakes
, J.
, 2012
, “Atmospheric and Wake Turbulence Impacts on Wind Turbine Fatigue Loadings
,” AIAA
Paper No. 2012-0540.10.
Johnson
, K.
, and Fritsch
, G.
, 2012
, “Assessment of Extremum Seeking Control for Wind Farm Energy Production
,” Wind Eng.
, 36
(6
), pp. 701
–716
.11.
Marden
, J. R.
, Ruben
, S. D.
, and Pao
, L. Y.
, 2012
, “Surveying Game Theoretic Approaches for Wind Farm Optimization
,” AIAA
Paper No. 2012-1154.12.
Jiménez
, Á.
, Crespo
, A.
, and Migoya
, E.
, 2010
, “Application of a LES Technique to Characterize the Wake Deflection of a Wind Turbine in Yaw
,” Wind Energy
, 13
(6
), pp. 559
–572
.13.
Wagenaar
, J. W.
, Machielse
, L. A. H.
, and Schepers
, J. G.
, 2012
, “Controlling Wind in ECN's Scaled Wind Farm
,” Europe Premier Wind Energy Event
(EWEA 2012
), Copenhagen, Denmark, Apr. 16–19, pp. 685
–694
.14.
Fleming
, P. A.
, Gebraad
, P. M.
, Lee
, S.
, van Wingerden
, J. W.
, Johnson
, K.
, Churchfield
, M.
, Michalakes
, J.
, Spalart
, P.
, and Moriarty
, P.
, 2014
, “Evaluating Techniques for Redirecting Turbine Wakes Using SOWFA
,” Renewable Energy
, 70
, pp. 211
–218
.15.
Fleming
, P.
, Gebraad
, P.
, Lee
, S.
, van Wingerden
, J. W.
, Johnson
, K.
, Churchfield
, M.
, Michalakes
, J.
, Spalart
, P.
, and Moriarty
, P.
, 2013
, “High-Fidelity Simulation Comparison of Wake Mitigation Control Strategies for a Two-Turbine Case
,” International Conference on Aerodynamics of Offshore Wind Energy Systems and Wakes
(ICOWES 2013
), Lyngby, Denmark, June 17–19.16.
Wilson
, J. M.
, Davis
, C. J.
, Venayagamoorthy
, S. K.
, and Heyliger
, P. R.
, 2015
, “Comparisons of Horizontal-Axis Wind Turbine Wake Interaction Models
,” ASME J. Sol. Energy Eng.
, 137
(3
), p. 031001
.17.
Kim
, T.
, Oh
, S.
, and Yee
, K.
, 2015
, “Improved Actuator Surface Method for Wind Turbine Application
,” Renewable Energy
, 76
, pp. 16
–26
.18.
Barthelmie
, R. J.
, Larsen
, G. C.
, Frandsen
, S. T.
, Folkerts
, L.
, Rados
, K.
, Pryor
, S. C.
, Lange
, B.
, and Schepers
, G.
, 2006
, “Comparison of Wake Model Simulations With Offshore Wind Turbine Wake Profiles Measured by SODAR
,” J. Atmos. Oceanic Technol.
, 23
(7
), pp. 888
–901
.19.
Butterfield
, S.
, Musial
, W.
, and Scott
, G.
, 2009
, “Definition of a 5-MW Reference Wind Turbine for Offshore System Development
,” National Renewable Energy Laboratory, Golden, CO, Technical Report No. NREL
/TP-500-38060.20.
Choi
, N. J.
, Nam
, S. H.
, Jeong
, J. H.
, and Kim
, K. C.
, 2013
, “Numerical Study on the Horizontal Axis Turbines Arrangement in a Wind Farm: Effect of Separation Distance on the Turbine Aerodynamic Power Output
,” J. Wind Eng. Ind. Aerodyn.
, 117
, pp. 11
–17
.21.
Son
, E.
, Lee
, S.
, Hwang
, B.
, and Lee
, S.
, 2014
, “Characteristics of Turbine Spacing in a Wind Farm Using an Optimal Design Process
,” Renewable Energy
, 65
, pp. 245
–249
.22.
Fleming
, P.
, Gebraad
, P.
, van Wingerden
, J. W.
, Lee
, S.
, Churchfield
, M.
, Scholbrock
, A.
, Michalakes
, J.
, Johnson
, K.
, and Moriarty
, P.
, 2013
, “The SOWFA Super-Controller: A High-Fidelity Tool for Evaluating Wind Plant Control Approaches
,” EWEA Annual Meeting
, Vienna
, Austria
, Feb. 4–7.23.
Porté-Agel
, F.
, Wu
, Y. T.
, Lu
, H.
, and Conzemius
, R. J.
, 2011
, “Large-Eddy Simulation of Atmospheric Boundary Layer Flow Through Wind Turbines and Wind Farms
,” J. Wind Eng. Ind. Aerodyn.
, 99
(4
), pp. 154
–168
.24.
Porté-Agel
, F.
, Lu
, H.
, and Wu
, Y. T.
, 2014
, “Interaction Between Large Wind Farms and the Atmospheric Boundary Layer
,” Procedia IUTAM
, 10
, pp. 307
–318
.25.
Jonkman
, J. M.
, 2009
, “Dynamics of Offshore Floating Wind Turbines—Model Development and Verification
,” Wind Energy
, 12
(5
), pp. 459
–492
.26.
Richards
, P. J.
, and Hoxey
, R. P.
, 1993
, “Appropriate Boundary Conditions for Computational Wind Engineering Models Using the k-ϵ Turbulence Model
,” J. Wind Eng. Ind. Aerodyn.
, 46
, pp. 145
–153
.27.
Sagol
, E.
, Reggio
, M.
, and Ilinca
, A.
, 2013
, “Issues Concerning Roughness on Wind Turbine Blades
,” Renewable Sustainable Energy Rev.
, 23
, pp. 514
–525
.28.
El Kasmi
, A.
, and Masson
, C.
, 2008
, “An Extended k–ε Model for Turbulent Flow Through Horizontal-Axis Wind Turbines
,” J. Wind Eng. Ind. Aerodyn.
, 96
(1
), pp. 103
–122
.29.
Cabezón
, D.
, Migoya
, E.
, and Crespo
, A.
, 2011
, “Comparison of Turbulence Models for the Computational Fluid Dynamics Simulation of Wind Turbine Wakes in the Atmospheric Boundary Layer
,” Wind Energy
, 14
(7
), pp. 909
–921
.30.
Prospathopoulos
, J. M.
, Politis
, E. S.
, Rados
, K. G.
, and Chaviaropoulos
, P. K.
, 2011
, “Evaluation of the Effects of Turbulence Model Enhancements on Wind Turbine Wake Predictions
,” Wind Energy
, 14
(2
), pp. 285
–300
.Copyright © 2016 by ASME
You do not currently have access to this content.