A directly irradiated cavity solar reactor devoted to the thermal reduction of SnO2 particle-cloud is studied numerically by using the Monte Carlo method. The steady-state model solves the radiation and convection heat transfers in the semitransparent particle suspension and the chemical reaction. It was used to predict the temperature distribution and the reaction extent inside the cavity, as well as the theoretical thermochemical efficiency for different operational conditions. The simulations assume that the reactor contains a nonuniform size suspension of radiatively participating reacting SnO2 particles. The model takes into account the radiative characteristics of the particles, as well as the directional characteristics of the power distribution of the incoming concentrated solar energy. The particle concentration, the particle size, and the length of the reactor are varied. Results show that the particle temperature and the yield of the endothermic reaction are higher when the reactor is fed with a cloud of particles with average diameter of 20 μm. The maximal thermochemical efficiency reached is 10%, which corresponds to an optimal optical thickness of around 2.
Skip Nav Destination
e-mail: hivv@cie.unam.mx
e-mail: caab@cie.unam.mx
e-mail: stephane.abanades@promes.cnrs.fr
e-mail: driveros@geofisica.unam.mx
e-mail: hrp@xanum.uam.mx
Article navigation
November 2011
Research Papers
Monte Carlo Heat Transfer Modeling of a Particle-Cloud Solar Reactor for SnO2 Thermal Reduction
H. I. Villafán-Vidales,
H. I. Villafán-Vidales
Processes,
e-mail: hivv@cie.unam.mx
Materials and Solar Energy Laboratory
, PROMES-CNRS, 7 Rue du Four Solaire, Font-Romeu, 66120, France
Search for other works by this author on:
C. A. Arancibia-Bulnes,
C. A. Arancibia-Bulnes
Centro de Investigación en Energía,
e-mail: caab@cie.unam.mx
Universidad Nacional Autónoma de México
, Privada Xochicalco s/n, Temixco, 62580, México
Search for other works by this author on:
S. Abanades,
S. Abanades
Processes,
e-mail: stephane.abanades@promes.cnrs.fr
Materials and Solar Energy Laboratory
, PROMES-CNRS, 7 Rue du Four Solaire, Font-Romeu, 66120, France
Search for other works by this author on:
D. Riveros-Rosas,
D. Riveros-Rosas
Instituto de Geofísica,
e-mail: driveros@geofisica.unam.mx
Universidad Nacional Autónoma de México
, Ciudad Universitaria, México DF, 04510, México
Search for other works by this author on:
H. Romero-Paredes
H. Romero-Paredes
Departamento de Ingeniería de Procesos e Hidráulica,
e-mail: hrp@xanum.uam.mx
Universidad Autónoma Metropolitana-Iztapalapa
, Av. San Rafael Atlixco No.186, México D.F, 09340, México
Search for other works by this author on:
H. I. Villafán-Vidales
Processes,
Materials and Solar Energy Laboratory
, PROMES-CNRS, 7 Rue du Four Solaire, Font-Romeu, 66120, France
e-mail: hivv@cie.unam.mx
C. A. Arancibia-Bulnes
Centro de Investigación en Energía,
Universidad Nacional Autónoma de México
, Privada Xochicalco s/n, Temixco, 62580, México
e-mail: caab@cie.unam.mx
S. Abanades
Processes,
Materials and Solar Energy Laboratory
, PROMES-CNRS, 7 Rue du Four Solaire, Font-Romeu, 66120, France
e-mail: stephane.abanades@promes.cnrs.fr
D. Riveros-Rosas
Instituto de Geofísica,
Universidad Nacional Autónoma de México
, Ciudad Universitaria, México DF, 04510, México
e-mail: driveros@geofisica.unam.mx
H. Romero-Paredes
Departamento de Ingeniería de Procesos e Hidráulica,
Universidad Autónoma Metropolitana-Iztapalapa
, Av. San Rafael Atlixco No.186, México D.F, 09340, México
e-mail: hrp@xanum.uam.mx
J. Sol. Energy Eng. Nov 2011, 133(4): 041009 (8 pages)
Published Online: October 13, 2011
Article history
Received:
May 13, 2011
Revised:
June 18, 2011
Online:
October 13, 2011
Published:
October 13, 2011
Citation
Villafán-Vidales, H. I., Arancibia-Bulnes, C. A., Abanades, S., Riveros-Rosas, D., and Romero-Paredes, H. (October 13, 2011). "Monte Carlo Heat Transfer Modeling of a Particle-Cloud Solar Reactor for SnO2 Thermal Reduction." ASME. J. Sol. Energy Eng. November 2011; 133(4): 041009. https://doi.org/10.1115/1.4004550
Download citation file:
Get Email Alerts
Cited By
Mass Flow Control Strategy for Maximum Energy Extraction in Thermal Energy Storage Tanks
J. Sol. Energy Eng (December 2025)
Exergy Optimization of a Hybrid Multi-Evaporative Desalination Plant Powered by Solar and Geothermal Energy
J. Sol. Energy Eng (June 2025)
Correlation for Maximum Heat Transfer Between Fluidized Bed and Its Wall and Application to Solar Power Plants
J. Sol. Energy Eng (June 2025)
Related Articles
Monte Carlo Radiative Transfer Modeling of a Solar Chemical Reactor for The Co-Production of Zinc and Syngas
J. Sol. Energy Eng (February,2005)
An Air-Based Cavity-Receiver for Solar Trough Concentrators
J. Sol. Energy Eng (August,2010)
Heat Transfer Analysis of a Novel Pressurized Air Receiver for Concentrated Solar Power via Combined Cycles
J. Thermal Sci. Eng. Appl (December,2009)
DSG Under Two-Phase and Stratified Flow in a Steel Receiver of a Parabolic Trough Collector
J. Sol. Energy Eng (May,2002)
Related Proceedings Papers
Related Chapters
Completing the Picture
Air Engines: The History, Science, and Reality of the Perfect Engine
Energy Balance for a Swimming Pool
Electromagnetic Waves and Heat Transfer: Sensitivites to Governing Variables in Everyday Life
The Special Characteristics of Closed-Cycle Gas Turbines
Closed-Cycle Gas Turbines: Operating Experience and Future Potential